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Abstract
Determining whether two spatial distributions are statistically equivalent is the goal of the Syrjala
test. When using continuous bivariate data, we show that the original Syrjala test produces different
results depending on the data aggregation steps. In this article, we propose modifications to the
previous version of the Syrjala test and make comparisons via simulations and an application. Sim-
ulation results indicate greater power and a more appropriate type one error rate for our modified
Syrjala test. Furthermore, our new approach can be used for environmental data (for which the
Syrjala test was originally developed), but also for data that originates from an eye-tracking study
conducted at Utah State University.

Key Words: Continuous Bivariate Data; Permutation Test; Environmental Data; Eye-
Tracking Data

1. Introduction

When handling two samples of continuous bivariate data, the question arises as to whether
the sampled data come from the same population. Well known tests for determining
whether two samples come from the same population in the univariate case include the
Kolmogorov-Smirnov test (Kolmogorov, 1933) and the Cramér-von Mises test (Cramér,
1928; von Mises, 1928). Syrjala (1996) proposed a generalization of the Cramér-von Mises
test to the bivariate case. The Syrjala test has been applied in many cases in the literature
including tests of differences in the spatial distributions of adult vs. juvenile Pacific cod
off the coast of Alaska (Syrjala, 1996), tests of differences in the distribution of the same
bird species over three consecutive years in Central Spain (Benayas et al., 2010), and tests
of differences in the distribution of two different respiratory infections affecting turtles in
the Mojave Desert (Berry et al., 2015). Chiu and Liu (2009) summarized several other
proposed generalizations of the Cramér-von Mises test.

In some cases, due to restrictions on the sampling locations being identical within
the Syrjala test, preliminary data binning has been carried out (Chetverikov et al., 2018;
McAdam et al., 2012). However, we show that depending on the data aggregation steps
(such as binning) results of the Syrjala test can be contradictory. We propose modifications
to the Syrjala test which eliminate the restriction for the sampling locations to be identical
and the need to bin the data. A simulation study suggests that our modified version of the
Syrjala test is in general more powerful and more appropriately sensitive.

Furthermore, an application of both the Syrjala test and our modified Syrjala test to a
study involving eye-tracking and posture perception of individuals at Utah State University
(USU) (Symanzik et al., 2017, 2018) showed stable results in our modified Syrjala test as
compared to differing results from the original Syrjala test depending on the data binning
technique employed.
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This article is structured as follows: In Section 2, we provide a background of the
Cramér-von Mises test for differences in two sample empirical distributions. In Section 3,
we introduce Syrjala’s test and outline its original use for spatial data. In Section 4, mod-
ifications to the Syrjala test are proposed and discussed. Section 5 outlines the setup and
results of a simulation study comparing the Syrjala test with our proposed modified Syrjala
test. Section 6 contrasts the results of the two tests applied to eye-tracking data obtained
from a posture study at USU. In Section 7, we provide conclusions and make note of addi-
tional elements for future study. All of our visualizations and analyses are conducted with
the R statistical computing platform (R Core Team, 2019).

2. Tests for Identical Bivariate Distributions

Harald Cramér and Richard Edler von Mises proposed a test for determining whether a
univariate sample comes from a theoretical distribution (Cramér, 1928; von Mises, 1928).
Anderson (1962) generalized the Cramér-von Mises test to the two sample setting where the
test determines whether two samples come from the same distribution (or whether there is
some unspecified difference between the two samples). Specifically, letX1,1, X1,2, . . . , X1,n

and X2,1, X2,2, . . . , X2,m be two independent random samples with unknown distribution
functions F1(x) and F2(x) and empirical distribution functions S1(x) and S2(x), respec-
tively. Then the hypotheses under consideration are as follows:

H0: F1(x) = F2(x) ∀x
Ha: F1(x) 6= F2(x) for at least one value of x.

For comparison to our modified Syrjala test (in Section 4), Conover (1998) showed that
Anderson’s extension to the Cramér-von Mises statistic can be written as

T =
mn

(m+ n)2


n∑

i=1

[S1(x1,i)− S2(x1,i)]2 +
m∑
j=1

[S1(x2,j)− S2(x2,j)]2
 . (1)

Since the Cramér-von Mises test is a permutation test (also called a randomization
test, re-randomization test, or an exact test) (Berry et al., 2011), the test statistic Ti is
recalculated N = (n+m)!

n!m! times, where i = 1, . . . , N . Specifically, N is the total num-
ber of permutations of the sample labeling subscripts within X1,1, X1,2, . . . , X1,n and
X2,1, X2,2, . . . , X2,m, where each permutation will relabel n points as sample one and
m points as sample two. The p-value is calculated as the total proportion of test statistics
Ti which are greater than or equal to the statistic T computed from the non-permuted data,
i.e.,

p− value =

N∑
i=1

I(Ti ≥ T )

N
, (2)

where I is the indicator function.

3. The Syrjala Test

Stephen E. Syrjala proposed a test for differences in the spatial distribution of two groups
as a generalization of the univariate Cramér-von Mises test to the bivariate setting (Syrjala,
1996). The test is designed for determining whether there is a difference between the loca-
tions of two populations at a single point in time, or whether there is a difference between
the locations of the same population at two points in time. However, the test requires that
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Figure 1: An example of identical sampling locations with differing location densities from
two spatial distributions inspired by Benayas et al. (2010), page 312. Larger radii of the
circles represent greater densities at each of the sampling locations.

the two samples both occur at an identical set of predefined locations. Furthermore, “The
random variable in this case is the observed density at the sampling location, not the loca-
tion itself.” (Syrjala, 1996). Hence, the hypotheses under consideration for the Syrjala test
can be stated as

H0: The normalized distributions of the populations are equal across the study area.
Ha: There is some unspecified difference in the normalized population distributions.

Borrowing from Syrjala (1996), let dt(xk, yk) denote the density of observations for
group t; t = 1, 2, at sample locations (xk, yk); k = 1, . . . ,K, relative to their position
on a bounding rectangle A, where K is the total number of sampling locations. Then,
Dt =

∑K
k=1 dt(xk, yk) is the sum of all densities across A, and γt(xk, yk) = dt(xk,yk)

Dt
are

the normalized densities. With these, we can construct Γt(x, y) =
∑

xk≤x,yk≤y γt(xk, yk)
which is analogous to the bivariate empirical distribution function. Figure 1 shows a vi-
sualization of densities of observations at each of the identical sampling locations for two
separate samples.

Similar to the Cramér-von Mises permutation test, the Syrjala first calculates a statistic
(Ψ) on the non-permuted samples.

Ψ =
K∑
k=1

[Γ1(xk, yk)− Γ2(xk, yk)]2 . (3)

Because this construction uses points near the origin more often than points in the
center, a common adjustment to Syrjala’s test is

Ψ̃ =
1

4

4∑
c=1

Ψc,where Ψc =

K∑
k=1

[Γ1(xc,k, yc,k)− Γ2(xc,k, yc,k)]2 , (4)

and (xc,k, yc,k) are positive coordinates defined relative to each of the four corners of A
(Syrjala, 1996).
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Next, permutations of the data are made by choosing to swap or leave γ1 (xk, yk) and
γ2 (xk, yk) at each (xk, yk) locations. This results in M = 2K possible permutations of
the data. Test statistics Ψ̃j ; j = 1, . . . ,M , are calculated for each of the permutations of
the data. The Ψ̃j calculations are identical to that of Ψ̃ (including the four rotations) except
that they are computed from the permuted data. The p-value is calculated as the proportion
of permuted statistics Ψ̃j which are greater than or equal to the original statistic Ψ̃ that is
computed from the non-permuted data, i.e.,

p− value =

M∑
j=1

I(Ψ̃j ≥ Ψ̃)

M
. (5)

It should be noted that in practice only a subset of M ′ � M (typically M ′ ≈ 1000)
possible permutations are used to calculate the level of significance due to computational
limitations.

4. Modifications of the Syrjala Test

Although binning of data to establish the common sampling locations required by the Syr-
jala test has been used in the literature (Chetverikov et al., 2018; McAdam et al., 2012), we
show that the results of the Syrjala test depend on the binning technique (see Section 5.1
for more details). Hence, we propose modifications to the Syrjala test which eliminate the
identical sampling locations restriction.

Extending our previous notation, let (X1,1, Y1,1), (X1,2, Y1,2), . . . , (X1,n, Y1,n) and
(X2,1, Y2,1), (X2,2, Y2,2), . . . , (X2,m, Y2,m) be two independent random samples with un-
known distribution functions F1(x, y) and F2(x, y) and bivariate empirical cumulative dis-
tribution functions (ecdf) Γ∗1(x, y) and Γ∗2(x, y), respectively. Then the hypotheses under
consideration are as follows:

H0: F1(x, y) = F2(x, y) ∀(x, y)
Ha: F1(x, y) 6= F2(x, y) for at least one coordinate pair (x, y).

In contrast to the Syrjala test, Γ∗1(x, y) and Γ∗2(x, y) in this test evaluate at each sam-
pling location within their respective samples instead of at identical sampling locations
from the two samples. Furthermore, the data will be rotatedR times (instead of four times).
Hence, the test statistic can be written as

Ψ∗ =
R∑

r=1

1

R

{
n

(m+ n)

n∑
i=1

[
Γ∗1,r(x1,i, y1,i)− Γ∗2,r(x1,i, y1,i)

]2
+

m

(m+ n)

m∑
j=1

[
Γ∗1,r(x2,j , y2,j)− Γ∗2,r(x2,j , y2,j)

]2}
,

(6)

where R is a discrete number of rotations within 360◦.
Our modified test statistic (Ψ∗) first computes the squared difference between the bi-

variate ecdfs evaluated at all of the data from the first sample. This sum of squared differ-
ences is weighted depending on the amount of data contributed from the first sample. This
process is repeated for the second sample, and the two weighted sums of squared differ-
ences are then combined. Next, the data are rotated 360/R degrees, and another weighted
average of the sums of squared differences of the ecdf values is computed. This computa-
tion is repeated for a total of R rotations, using Γ∗1,r and Γ∗2,r for each of the rth rotations,
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with each rotation being weighted by 1/R. This is the computation of the test statistic on
the original data.

As a permutation test, the test statistic Ψ∗l ; l = 1, . . . , N , is recalculated N = (n+m)!
n!m!

times where n and m are the respective sample sizes, and N is the total number of permu-
tations of the sample labeling subscripts within (X1,1, Y1,1), (X1,2, Y1,2), . . . , (X1,n, Y1,n)
and (X2,1, Y2,1), (X2,2, Y2,2), . . . , (X2,m, Y2,m). The p-value is calculated as the total pro-
portion of test statistics Ψ∗l which are greater than or equal to the statistic Ψ∗ computed
from the non-permuted data, i.e.,

p− value =

N∑
l=1

I(Ψ∗l ≥ Ψ∗)

N
. (7)

A visualization of the calculation of our modified Syrjala test can be seen in Figure 2.
The top left graph in Figure 2 highlights three points from the two samples. The high-
lighted vertical bars seen between the two ecdfs in the bottom left graph represent the
differences between the ecdfs evaluated at the respective highlighted points. The remain-
ing two columns in Figure 2 suggest similarly made calculations (on the same highlighted
points), but for rotated versions of the data. In this case, the data are being rotated every
40◦ for a total of R = 360/40 = 9 rotations. However, only the first two rotations are
shown in Figure 2.

It should be noted that the bottom row of graphs in Figure 2 displays only the marginal
ecdfs for each sample (and not the bivariate ecdfs). However, the difference between over-
lapping bivariate ecdfs is difficult to visualize. Hence, the marginal ecdfs are shown for
visualization purposes only. Figure 3 compares the two bivariate ecdfs for the same data
used in Figure 2.

5. Simulation

5.1 Simulation Design

A simulation study was carried out to compare the performances of the Syrjala test with
our proposed modified Syrjala test introduced in Section 4. To assess the tests when the
null hypothesis is true, two realizations of independent, uniformly distributed, or com-
pletely spatially random (CSR), data were simulated on [0, 1] × [0, 1] square regions. To
assess the tests when the null hypothesis is false, four separate comparisons were made,
each of which was compared to CSR. The four departures from CSR (also simulated on
the [0, 1] × [0, 1] square) were constructed using the following intensity functions for the
heterogeneous Poisson process where the values a1, a2, a3, and a4 are height parameters.

f1(x, y) = a1 · exp
{
− 20 ·

[
(x− 0.5)2 + (y − 0.5)2

]}
(Center)

f2(x, y) = a2 ·
(

1− exp
{
− 80 ·

[
(x− 0.5)4 + (y − 0.5)4

]})
(Repel)

f3(x, y) = a3 · exp
{
− 5 ·

[
(x− 1)2 + (y − 1)2

]}
(Corner)

f4(x, y) = a4 · exp
{
− 5 · (x− 1)2

}
(Right)

Let µ be the average number of points within the unit square for the heterogeneous
Poisson process. For reproducibility, Table 1 shows the values for the height parameters
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Sample 1

xy

Sample 2

xy

Figure 3: A visualization of the two bivariate ecdfs for the non-rotated samples shown in
Figure 2.

Table 1: A table of the height parameter values (a1, a2, a3, and a4) which achieve a desired
average number of points within the unit square (µ) for each respective intensity function.

µ a1 a2 a3 a4
50 319 79 319 126
100 639 158 639 253
250 1597 395 1597 632
500 3193 790 3193 1264

a1, a2, a3, and a4 that achieve a specified intensity µ for each departure from CSR. The
coefficients within the exponents of each of the intensity functions were chosen to ensure
a sufficient departure from CSR was simulated. These coefficients also guarantee at least
97% of the area under each intensity function lie within the unit square. For each of the
five comparisons (CSR compared with CSR, Center, Repel, Corner, Right), a CSR realiza-
tion of 500 points was compared to four different sample sizes for each of the comparison
distributions, specifically, sample sizes of 50, 100, 250, and 500. The results from the
simulation study are summarized and displayed as a grid of line graphs in Figure 4. Visual-
izations of the CSR and heterogeneous Poisson process realizations (with µ = 500 points)
using each one of the intensity functions (referred to as CSR, Center, Repel, Corner, and
Right, respectively) can be seen as a column of graphs in the far right of Figure 4.

Before applying the Syrjala test, two different types of binning were applied to the
data, namely regular and random binning. Regular binning consists of dividing the sample
region into a grid of equally sized rectangles. The density of all sample points within
each rectangle was reported at the center of the respective rectangles. Random binning
consists of randomly assigning binning points (using a simple sequential inhibition process)
across the sample region, and assigning each sample point to the closest random binning
point (using Euclidean distance). Within each of these binning approaches, three levels of
granularity were used. Regular binning consisted of dividing the unit square into 5 × 5,
10× 10, and 20× 20 rectangular grids. Random binning involved randomly assigning 25,
100, and 400 random binning points across the sample region.

For our modified Syrjala test, by default no binning of the data was required. However,
a subjective number of rotations to the data must be set. Hence, the Syrjala test was applied
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to the data using five different numbers of rotations, namely 4, 6, 8, 10, and 36 rotations
of the data within 360◦. Finally, for each different binning scenario (for the Syrjala test)
or rotation number (for our modified Syrjala test) the respective test was applied ten times.
The number of significant tests (p-value > 0.05) out of the ten iterations was recorded and
a visualization of the simulation results is provided in Figure 4.

5.2 Simulation Results

Figure 4 displays a grid of line graphs which summarize the simulation study results. The
first row of graphs compare cases when the null hypothesis is true (i.e., when both samples
come from the same bivariate distributions). Realizations of CSR with 500 data points were
compared to other realizations of CSR with 50, 100, 250, and 500 data points (as indicated
in the respective columns from left to right). The underlined space ( ) within each of the
column names is a place holder for the row name. For example, the line graph in the top
left of the grid is referred to as CSR 500 vs CSR 50.

Specifically, the CSR 500 vs CSR 50 graph shows the number of significant tests out
of ten iterations for both the Syrjala and modified Syrjala tests across the different binning
techniques (for the Syrjala test) or number of rotations (for our modified Syrjala test).
Notice the Syrjala test failed to reject the null hypothesis for every iteration across the six
binning techniques, whereas our modified Syrjala test rejected three tests (once when six
rotations were employed within the test, once for eight rotations, and once for 36 rotations).

Looking at all of the comparisons of CSR vs CSR (all of the line graphs in the first row
of Figure 4), we see that the Syrjala test rejected one out of 240 (ten iterations times six
binning techniques times four sample size comparisons) tests. Our modified Syrjala test in
contrast rejected nine out of 200 (ten iterations times five rotation levels times four sample
size comparisons) tests. In other words, the Syrjala test rejected less than one percent of
the tests, whereas our modified Syrjala test rejected 4.5% of the tests. Since we are testing
at the 5% significance level, we should expect to see roughly 5% of tests reject the null
hypothesis when it is actually true. Hence, our modified Syrjala test is more appropriately
sensitive. This also confirms an observation made by Fuller et al. (2006): “In general,
rejecting the null hypothesis of identical configurations is quite difficult with the Syrjala
test”.

The remaining rows of graphs show comparisons between realizations of a CSR pro-
cess with departures from CSR, i.e., when the null hypothesis is false. In the second row,
realizations of CSR (with sample sizes of 500 points) were compared to realizations of a
heterogeneous Poisson process called Center (with 50, 100, 250, and 500 sample points,
respectively). Overall, the Syrjala test produced multiple non-significant tests depending
on the binning technique and sample size. However, our modified Syrjala test detected
significant differences uniformly across all of these cases regardless of the number of rota-
tions.

Particularly, the CSR 500 vs Center 50 graph shows three non-significant tests for the
Syrjala test when binning on a regular 5×5 grid, and six non-significant tests when binning
with 25 random binning points. However, the Syrjala test produced significant results for
10× 10 and 20× 20 regular binning and for 100 and 400 random binning (each tested ten
times). Additionally, when using 25 random binning points, the Syrjala test struggled to
identify three, four, and five significant differences for each of the comparisons CSR 500 vs
Center 100, CSR 500 vs Center 250, and CSR 500 vs Center 500, respectively. However,
there are only significant Syrjala test results for all of the other binning techniques (5 × 5,
10 × 10, and 20 × 20 regular binning, as well as 100 and 400 random binning) for each
of the CSR 500 vs Center 100, CSR 500 vs Center 250, and CSR 500 vs Center 500

 
2526



comparisons. This suggests a dependence of the Syrjala test on the data aggregation step.
It also suggests binning must be granular enough to reflect the deviations from CSR. In
contrast, our modified Syrjala test detected significant differences uniformly across all of
these CSR vs Center comparisons for any number of rotations.

In the third row, realizations of CSR were compared with departures from CSR called
Repel. These comparisons provide an interesting case since both the Syrjala test and our
modified Syrjala test struggled to indicate every significant difference across the different
sample size comparisons. In the CSR 500 vs Repel 50 graph, the Syrjala test failed to detect
any significant differences across all of the binning techniques. Whereas, our modified
Syrjala test resulted in five, one, five, one, and four significant tests (each out of ten) for
four, six, eight, ten, and 36 rotations, respectively.

In the CSR 500 vs Repel 100 graph, we begin to see positive association between the
binning granularity and the Syrjala test. Notice when applying regular binning, the Syrjala
test detected zero, one, and five significant tests for the 5× 5, 10× 10, and 20× 20 regular
grids, respectively. Similarly, when applying random binning, the Syrjala test detected zero,
two, and five significant tests for the 25, 100, and 400 random binning points, respectively.
In contrast, our modified Syrjala test produced nine, six, six, six, and eight significant tests
for four, six, eight, ten, and 36 rotations, respectively. Hence, our modified Syrjala test is
on average more powerful than the Syrjala test in this comparison.

In the remaining two comparisons (CSR 500 vs Repel 250 and CSR 500 vs Repel 500)
our modified Syrjala test detected significant differences across all numbers of rotations.
Whereas, the Syrjala test demonstrated a strong positive association with the binning gran-
ularity (as binning granularity increased, the number of significant tests also increased).

Overall, not only does row three in Figure 4 reinforce the observed dependence of
the Syrjala test on the binning technique, but it also confirms that the Syrjala test places
less emphasis on differences located near the center of the bounding region which was
observed by McAdam et al. (2012). In contrast, our modified Syrjala test is in general
more powerful in detecting these differences across all of the comparisons. Furthermore,
while our modified Syrjala test averaged 3.2 significant tests in CSR 500 vs Repel 50, and
seven significant tests in CSR 500 vs Repel 100, there is little indication in these cases of a
dependence of our modified Syrjala test on the number of rotations.

In the remaining two rows where realizations of CSR are compared with the Corner
and Right distributions, both tests were able to detect significant differences except for one
case where the Syrjala test used a 5 × 5 regular binning grid. The case failed to detect the
difference between a realization of CSR with 500 points and the Right distribution with 50
points. In general, however, these comparisons suggest that there are cases in which the
Syrjala test and our modified Syrjala test still agree.

6. Application to the USU Posture Study

Along with the results of the simulation (in Section 5.2), we also conducted a comparison of
p-values from the Syrjala test and our modified Syrjala test applied to data from the USU
Posture Study (Symanzik et al., 2017, 2018). The study involved gathering eye-tracking
data on subjects who were asked to determine the posture stability of a depicted person.
Two groups of 20 subjects were labeled as the control and treatment groups depending on
whether the subject had recent experience practicing yoga. One of the main questions of
interest in the study is whether the two groups focus visually on different parts of the body
when assessing another individual’s stability. Figure 5 shows a comparison of two subjects’
individual sample view points for a posture labeled as Posture 6.

Table 2 shows the p-values for the respective tests across the different data binning
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Figure 5: Comparison of Posture 6 of the USU Posture Study, showing viewing patterns
for two subjects.

techniques and number of rotations (discussed in more detail in Section 5.1). For both
the Syrjala test and our modified Syrjala test, 1000 permutations of the data were used to
calculate the test statistics. Additionally, the Syrjala test and our modified Syrjala test were
applied once for each binning technique or number of rotations, whereas the tests were
iterated ten times in the simulation study for each binning technique. Notice the Syrjala
test produces significant (bolded in Table 2) and non-significant p-values depending on
the binning technique and number of bins. In contrast, our modified Syrjala test resulted in
consistent significance across all numbers of data rotations within the test. This is consistent
with the data since Figure 5 suggests differences in sample view points particularly around
the head, upper torso, left knee, hands, and feet.

Table 2: Comparison of test results between the Syrjala test and our modified Syrjala test
for Posture 6 viewing patterns from two subjects. The bolded values indicate significant
results (p-values < 0.05).

Syrjala Test Modified Syrjala Test
Regular Grid Random Points Rotations

Posture 5× 5 10× 10 20× 20 25 100 400 4, 6, 8, 10, 36
6 0.245 0.060 0.011 0.186 0.012 0.008 0.001

7. Conclusions and Future Work

7.1 Conclusions

While cases of data aggregation have been used in the literature to achieve identical sam-
pling locations necessary to apply the Syrjala test, through simulation (see Section 5) and
application to real data (see Section 6), we demonstrated that the results of the Syrjala test
depend on the binning of the data. We also confirmed an observation made by Fuller et al.
(2006): “In general, rejecting the null hypothesis of identical configurations is quite dif-
ficult with the Syrjala test”. Furthermore, we confirmed that the Syrjala test places less
emphasis on differences centered in the bounding rectangle (McAdam et al., 2012).
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In comparison, our modified Syrjala test produces results that are more appropriately
sensitive and in general more powerful, especially in cases where the major differences
exist in the center in the bounding rectangle (see Section 5.2). Our modified Syrjala test
produces consistent results in our application to real data, and it is more generally applica-
ble due to the removed restriction of identical sampling locations.

7.2 Future Work

While more computationally expensive, the simulation of our modified Syrjala test may be
extended to higher numbers of rotations within 360◦ to ensure stability of results. Further-
more, additional versions of our modified Syrjala statistic could be examined including the
following

Ψ∗1 =
R∑

r=1

1

R

{ n∑
i=1

[
Γ∗1,r(x1,i, y1,i)− Γ∗2,r(x1,i, y1,i)

]2
+

m∑
j=1

[
Γ∗1,r(x2,j , y2,j)− Γ∗2,r(x2,j , y2,j)

]2}
,

(8)

Ψ∗2 =
R∑

r=1

1

R

{
nm

(n+m)2

( n∑
i=1

[
Γ∗1,r(x1,i, y1,i)− Γ∗2,r(x1,i, y1,i)

]2
+

m∑
j=1

[
Γ∗1,r(x2,j , y2,j)− Γ∗2,r(x2,j , y2,j)

]2)}
, and

(9)

Ψ∗3 =

R∑
r=1

1

R

{
n

(m+ n)

n∑
i=1

|Γ∗1,r(x1,i, y1,i)− Γ∗2,r(x1,i, y1,i)|

+
m

(m+ n)

m∑
j=1

|Γ∗1,r(x2,j , y2,j)− Γ∗2,r(x2,j , y2,j)|
}
.

(10)

Equation (8) considers non-weighted sums of squared differences between the bivariate
ecdf values from the two samples. Equation (9) is a construction similar to that proposed
by Anderson (1962). Equation (10) calculates the weighted sums of absolute differences
between the bivariate ecdf values.
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