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ABSTRACT

Extensions to the Syrjala Test with Eye-Tracking Data Analysis Applications in R

by

Eric D. McKinney, Doctor of Philosophy

Utah State University, 2022

Major Professor: Jürgen Symanzik, Ph.D.
Department: Mathematics and Statistics

This dissertation introduces a series of new two-sample tests of distributional

equality. The new tests are a generalization of the Syrjala (1996) test and make

use of both rotations and toroidal shifts of the data. The new tests exhibit stability

across a variety of explored test statistics. The test which employs both rotations

and toroidal shifts overcomes many of the limitations of the original Syrjala test,

and can be used for a variety of two-sample continuous bivariate data. Furthermore,

several of the new tests are shown to be competitive or better than other modern

techniques via simulation experiments. One of the new tests is applied to a new study

in eye-tracking and postural stability assessment, called the Utah State University

(USU) Posture Study. The setup, data collection, and data preprocessing of the USU

Posture Study are also provided. These new tests, called the modified Syrjala tests,

are made available via the distdiffR package for the R software environment for

statistical computing and graphics. A vignette and user manual for the package are

also provided.
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PUBLIC ABSTRACT

Extensions to the Syrjala Test with Eye-Tracking Data Analysis Applications in R

Eric D. McKinney

Eye tracking is a process for measuring the movement of an individual’s eye(s)

when that individual is looking at something. Many eye-tracking technologies exist

to aid in calculating and recording data associated with what a person focuses their

visual attention on. For example, eye-tracking technology can record points on an

image that a person is looking at. Often the question arises as to whether two people,

or groups of people, are looking at the same thing(s). This dissertation presents a

new way (or test) to quantify those differences while taking into consideration the

randomness associated with such data. Hence, the test can help to determine if the

differences between what the two people, or groups of people, are looking at are

caused by chance or not. However, the test is also useful to many other kinds of

data similar to but outside of eye-tracking research. While this test takes longer for

standard household computers to run than other alternative tests currently available,

it is shown to be better in many cases at correctly identifying differences when those

differences were not caused by randomness. The test is also better at identifying

when the differences are caused by chance, and not necessarily by the people. The

test is applied to eye-tracking data from a study held at Utah State University (USU),

called the USU Posture Study, where many differences are found. The test is available

online, and comes with a user manual and some examples of how to use it.
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CHAPTER 1

Introduction

This dissertation introduces a series of new two-sample tests of distributional

equality. The new tests are a generalization of the Syrjala (1996) test and make use

of both rotations and toroidal shifts of the data. Several of the tests are shown to be

competitive or better than other modern techniques. The test which employs both

rotations and toroidal shifts is applied to a new study in eye-tracking and postural sta-

bility assessment, called the Utah State University (USU) Posture Study (Symanzik

et al., 2017, 2018; Studenka et al., 2020; Coltrin et al., 2020; McKinney and Symanzik,

2019, 2021). The setup, data collection, and data preprocessing of the USU Posture

Study is also provided. The study results suggest that there are an abundance of

detectable differences between and within the treatment and control groups captured

in the subject’s eye-tracking data. The new tests, called the modified Syrjala tests,

are made available via the distdiffR package for the R software environment for

statistical computing and graphics (R Core Team, 2019).

1.1 Motivation

While multiple hypotheses are posed within the USU Posture Study, much of the

motivation is provided in the following question, “Does judging the action capabilities

of another person depend on one’s own experiences?” Specifically, is there a significant

difference in what subjects look at when judging the stability of a posture between

subjects with and without recent yoga experience? Consequently, a series of bivariate

spatial eye-tracking data was collected to answer this question. Additional details are

provided in Chapter 4.
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Several statistical tests for comparing bivariate distributions between two sam-

ples exist in the literature (Chapter 2). Among which, it was discovered that data

binning methods have been used (Chetverikov et al., 2018; McAdam et al., 2012) in

order to apply the Syrjala (1996) test. This has been shown to give contradictory re-

sults depending on the granularity of the binning technique (McKinney and Symanzik,

2019). However, several proposed modifications to the Syrjala test (Chapter 5) not

only make it more generally applicable, but are also shown to be more powerful and

more conservative than alternative methods, including the original Syrjala test.

1.2 Outline

The structure of this dissertation proceeds as follows: In Chapter 2, an overview

of two-sample tests of distributional equality is provided with an emphasis on the

two-sample bivariate case. Sections 2.2.1–2.2.4 outline four two-sample tests of dis-

tributional equality which can be used in the bivariate case, namely, the Syrjala

(1996), energy (Rizzo and Székely, 2016), maximum mean discrepancy (Gretton et al.,

2012), and Friedman and Rafsky (1979) tests. Chapter 3 provides an overview of ba-

sic eye-tracking analyses along with definitions of commonly measured variables and

statistics. The end of Chapter 3 also provides a separation between the literature re-

view/previous research conducted and this dissertation’s novel contributions, which

are detailed in the remaining chapters. Chapter 4 details the setup, data collection,

and data preprocessing of the USU Posture Study. The Syrjala test provides inspi-

ration to a series of modified versions presented in Chapter 5. Multiple simulation

comparisons between the modified Syrjala tests and the other tests (covered in Sec-

tions 2.2.1–2.2.4) are detailed in Chapter 6. A series of simulations which demonstrate

the performance of the modified Syrjala tests on data generated to more closely re-

semble scenarios observed in eye-tracking studies is also provided in Chapter 6. An
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application of one version of the modified Syrjala tests to the USU Posture Study is

detailed in Chapter 7 followed by an introduction of the distdiffR R package for the

R software environment for statistical computing and graphics (R Core Team, 2019)

provided in Chapter 8. A vignette and user manual for the distdiffR package are

also provided in Chapter 8. Chapter 9 provides some concluding remarks, and out-

lines additional areas for further study. Appendix A provides a series of mathematical

proofs and additional details referred to throughout this dissertation. Appendix B

gives many additional simulation results. Additionally, a collection of figures used

within the USU Posture Study is provided in Appendix C.
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CHAPTER 2

Two-sample Tests of Distributional Equality

This chapter provides an overview of two-sample tests of distributional equality.

Section 2.1 begins with the univariate case while Section 2.2 covers the multivariate

case. An emphasis is made on the bivariate case in Section 2.2, as the application

to eye-tracking data (made in Chapter 7) leverages a bivariate two-sample test of

distributional equality.

2.1 Tests for Univariate Data

When handling two samples of continuous bivariate data, the question arises as

to whether or not the sampled data come from the same population. Well known tests

for determining whether two samples come from the same population in the univariate

case include the two-sample Kolmogorov-Smirnov test (Kolmogorov, 1933) and the

Cramér-von Mises test (Cramér, 1928; von Mises, 1928) generalized to the two-sample

case by Anderson (1962).

To define these more precisely, let X1,1, X1,2, . . . , X1,n1 and X2,1, X2,2, . . . , X2,n2

be two independent random samples with sample sizes n1 and n2, respectively. Also,

let F1(x) and F2(x) be unknown cumulative distribution functions (CDFs), and S1(x)

and S2(x) be empirical cumulative distribution functions (ECDFs), for each respective

sample. The ECDF of a sample is defined as,

Si(x) =
1

ni

ni∑
j=1

1Xi,j≤x, −∞ < Xi,j < ∞

where 1Xi,j≤x is one if Xi,j ≤ x and zero otherwise, i = 1, 2 is the sample index, j is
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the observation index within sample i, and ni is the sample size of the ith sample. The

plot of the ECDF, which is a step function, provides an exhaustive representation of

the data (D’Agostino, 1986). Figure 1 shows an example of an ECDF plot.
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Fig. 1: A plot of a univariate ECDF for ten randomly generated uniform data values.
A rug plot, displayed on the horizontal axis, shows the locations of the actual data
values. Since there are ten data values, the ECDF jumps by a value of 1/10 = 0.1 at
each data value location.

Additionally, Si(x) is an unbiased and consistent estimator of Fi(x). For math-

ematical proofs of both of these properties, see Appendix A.

Consequently, the ECDF is commonly used in test statistics which address the

following hypotheses:
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H0: F1(x) = F2(x) ∀x

Ha: F1(x) ̸= F2(x) for at least one value of x.

Among which, the well known two-sample Kolmogorov-Smirnov test statistic (Kol-

mogorov, 1933) is defined as

TKS = sup
x
|S1(x)− S2(x)|,

where sup is the supremum function (also referred to as the least upper bound)

(Rudin, 1964). Figure 2 shows an example of the two sample Kolmogorov-Smirnov

test statistic calculated between two ECDFs.

Fig. 2: An example of the two-sample Kolmogorov-Smirnov test statistic which
is the maximum absolute vertical distance (represented by the black line segment)
calculated between two ECDFs.



7

Furthermore, the two sample Cramér-von Mises test statistic (Anderson, 1962),

which employs Riemann-Stieltjes integration, is

TA =
n1n2

n1 + n2

∫ ∞

−∞
[S1(x)− S2(x)]

2dS∗(x),

which can be calculated using

(1) TA =
n1n2

(n1 + n2)2

{
n1∑
j=1

[S1(x1,j)− S2(x1,j)]
2 +

n2∑
j=1

[S1(x2,j)− S2(x2,j)]
2

}
.

where S∗(x) is the ECDF of the combined samples. Specifically,

S∗(x) =
n1S1(x) + n2S2(x)

n1 + n2

.

Additionally, if there are no duplicate observations, and both samples are sorted

in increasing order such that r1,1, r1,2, . . . , r1,n1 and r2,1, r2,2, . . . , r2,n2 are the ranks

of the observations in both samples, respectively, then Anderson (1962) showed that

Equation 1 can be written as

TA =
UA

n1n2(n1 + n2)
− 4n1n2 − 1

6(n1 + n2)
,

where

UA = n1

n1∑
j=1

(r1,j − j)2 + n2

n2∑
j=1

(r2,j − j)2.

Similarly, Darling (1957) proposed a two-sample version to the Anderson-Darling

statistic (Anderson and Darling, 1952, 1954), which was further detailed by Pettitt

(1976). The statistic (also using Riemann-Stieltjes integration) is defined as
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TD =
n1n2

n1 + n2

∫ ∞

−∞

[S1(x)− S2(x)]
2

S∗(x)[1− S∗(x)]
dS∗(x),

This has been further generalized to a k-sample Anderson-Darling statistic proposed

by Scholz and Stephens (1987).

Since the two-sample Kolmogorov-Smirnov, Cramér-von Mises, and Anderson-

Darling tests are permutation tests (also called randomization tests, re-randomization

tests, or exact tests) (Kolmogorov, 1933; Berry et al., 2011), the respective test statis-

tic T is recalculated N = (n1+n2)!
n1!n2!

times producing Tk data-permuted test statistics

where k = 1, . . . , N . Specifically, N is the total number of permutations of the sample

labeling subscripts within X1,1, X1,2, . . . , X1,n1 and X2,1, X2,2, . . . , X2,n2 , where each

permutation will relabel n1 points as sample one and n2 points as sample two. The

p-value is calculated as the total proportion of test statistics Tk which are greater

than or equal to the statistic T computed on the non-permuted data (Davison and

Hinkley, 1997), i.e.,

p-value =

N∑
k=1

(ITk≥T ) + 1

N + 1
.

While the two-sample Kolmogorov-Smirnov test belongs to a more general class of

supremum ECDF statistics, the two-sample Cramer-von Mises and Anderson-Darling

tests belong to a class of quadratic ECDF statistics (D’Agostino, 1986). The new

statistic proposed in Chapter 5 of this dissertation falls within this latter class, except

it is designed for bivariate two-sample data. A survey of bivariate two-sample tests

is covered in Section 2.2.

Outside of ECDF statistics, there exists other approaches to measuring distribu-

tional equality between two samples, such as non-parametric rank tests. A commonly

used rank test is the Mann-Whitney U test (also called the Mann-Whitney-Wilcoxon,
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Wilcoxon rank-sum test, or Wilcoxon-Mann-Whitney test)(Mann andWhitney, 1947).

While originally designed to test for a difference in medians between the two pop-

ulation distributions, it can be extended as a test for any difference between two

samples from an unspecified distribution (Pratt, 1964). The alternative hypothesis is

the probability of an observation from the first population X1 exceeding an observa-

tion from the second population X2 is different than the probability of observation

X2 exceeding observation X1, i.e., P (X1 > X2) ̸= P (X2 > X1). The statistic is

calculated using the following steps:

1. While preserving sample labels, combine sample values into one set and sort

the values in increasing order.

2. Rank all of the sample values. The smallest value will be assigned a 1 and the

largest value will be assigned n1 + n2 (if there are no ties for the smallest and

largest values).

3. If ties exist, replace each tied value’s rank with the average value of all of the

ranks for that tied value. For example, if the values are {3, 5, 5, 5, 5, 11}, then

the unadjusted ranks would be {1, 2, 3, 4, 5, 6}. However, since there are four 5

values, the new rank for each 5 value would be (2 + 3 + 4 + 5)/4 = 3.5. Hence,

the adjusted ranks would be {1, 3.5, 3.5, 3.5, 3.5, 6}.

4. Sum the ranks for each sample separately. Let each sum be R1 and R2, respec-

tively. (The sum of all ranks will equal [(n1 + n2)(n1 + n2 + 1)]/2.)

5. Next calculate:

Ui = Ri −
ni(ni + 1)

2
, for i = 1, 2.

While the same p-value can be computed from either Ui, it is common to use
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U = min
i=1,2

{Ui}.

Ui will range from 0 to n1 × n2, and it represents the number of times a value

from the ith sample precedes a value from the other sample in a sequence of combined

sample values. If we assume that the null hypothesis is true, then each of the
(
n1+n2

ni

)
reassignments of the sample labels to the ith sample values is equally likely. Hence,

the null distribution of U can be calculated explicitly. Mann and Whitney (1947)

showed that E(U) = (n1n2)/2, where E is the expected value. Hence,

p-value = P (|U − E(U)| ≥ |U∗ − E(U)|) ,

where U∗ is the computed U value using the original sample labels. Additionally,

Mann and Whitney (1947) showed that the distribution of U approaches a normal

distribution as n1 and n2 jointly approach infinity.

The Mann-Whitney U test was also extended to k-samples by Kruskal and Wallis

(1952) for use in comparing the medians in the k-samples. Steel’s test (Steel, 1960,

1961) conducts pair-wise Mann-Whitney U tests for k-samples. Additionally, the

Jonckheere-Terpstra test (Jonckheere, 1954; Terpstra, 1952) has been shown to be

more powerful than the Kruskall-Wallis test when there exists an apriori ordering in

the populations.

Wald and Wolfowitz (1944) also developed a test for measuring whether two

binary values which occur in a sequence are drawn independently from the same dis-

tribution. The test measures the number of “runs” in the sequence, where “runs” are

defined as non-empty segments of the sequence which consist of subsequent elements

of the same binary class.
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For example, a coin that is flipped 12 times produces the sequence

{H, H, H, H, H, H, T, T, T, H, T, T},

where H represents a heads, and T represents a tails. This sequence consists of four

runs, namely {H, H, H, H, H, H}, {T, T, T}, {H}, and {T, T}.

Assuming that the heads and tails are being drawn from the same distribution,

let the number of runs in a sequence of length NHT = NH + NT , where NH is the

number of heads flipped, and NT is the number of tails flipped. Wald and Wolfowitz

(1944) showed that the number of runs, NR, follows a normal distribution such that

NR ∼ Normal

(
2NHNT

NHT

+ 1,
2NHNT (2NHNT −NHT )

N2
HT (NHT − 1)

)
.

However, the Wald-Wolfowitz runs test is well known to be generally one of the

less powerful non-parametric tests (Friedman and Rafsky, 1979).

2.2 Tests for Bivariate Data

This section provides a review of the literature on two-sample tests of distribu-

tional equality for bivariate data, and builds upon the univariate two-sample tests

overviewed in Section 2.1. Some attempt has been made to develop methods for

applying univariate tests (see Section 2.1) to higher dimensional data, such as us-

ing statistically equivalent blocks (Wilks, 1941; Fraser, 1951). However, many of the

univariate two-sample tests have also been generalized to bivariate settings.

For example, Friedman and Rafsky (1979) generalized the two-sample Kolmogorov-

Smirnov test to the bivariate case, and Bickel (1969) developed a p-variate version. In

the same paper, Friedman and Rafsky (1979) also proposed a bivariate version of the

Wald-Wolfowitz runs test (Wald and Wolfowitz, 1944) which is based on a minimal



12

spanning tree on the pooled sample. Both the Wald-Wolfowitz and Kolmogorov-

Smirnov generalizations of the Friedman and Rafsky (1979) test are discussed in

greater detail in Section 2.2.4. The Friedman and Rafsky’s Kolmogorov-Smirnov

generalization is included in the simulation comparisons detailed in Chapter 6. The

Friedman and Rafsky’s Wald-Wolfowitz generalization is not included due to its low

exhibited power as noted by Friedman and Rafsky (1979), which was also exhibited

in preliminary results of the simulations included in Chapter 6.

Furthermore, Choi and Marden (1997) proposed multivariate tests which mimic

the two-sample Mann-Whitney U test (Mann and Whitney, 1947), the Jonckheere-

Terpstra test for trend (Jonckheere, 1954), and the Kruskal-Wallis one-way analysis of

variance test (Kruskal and Wallis, 1952). Anderson et al. (1994) extended a goodness-

of-fit test by Hall (1984) to a two-sample test for measuring discrepancies between

two multivariate probability density functions using kernel-based density estimates.

Additionally, tests involving the nearest neighbors algorithm have been developed

for the multivariate two-sample setting (Schilling, 1986; Henze, 1988; Mondal et al.,

2015).

Similar to nearest neighbor techniques, there exists a variety of published meth-

ods which employ pairwise distances between observations (Hall and Tajvidi, 2002;

Baringhaus and Franz, 2004). Within this group, several publications have centered

on a concept of “energy” which can be measured on a data set (Zech and Aslan,

2003; Székely and Rizzo, 2004). In addition, the Székely and Rizzo (2004) energy

test, discussed in more detail in Chapter 2.2.2, is rotational-invariant and can be

applied in the univariate or multivariate setting. It is also included in the simulation

comparisons detailed in Chapter 6.

Additionally, Gretton et al. (2012) proposed a statistic called the maximum mean

discrepancy, which measures the largest difference in expectations over functions in
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the unit ball of a reproducing kernel Hilbert space. This test is presented in greater

detail in Chapter 2.2.3, and is also included in the simulation comparisons detailed

in Chapter 6.

Syrjala (1996) proposed a generalization of the Cramér-von Mises test to the

bivariate case. The Syrjala test, discussed in more detail in Chapter 2.2.1, has been

applied in many cases in the literature including tests of differences in the spatial dis-

tributions of adult vs. juvenile Pacific cod off the coast of Alaska (Syrjala, 1996), tests

of differences in the distribution of the same bird species over three consecutive years

in Central Spain (Benayas et al., 2010), and tests of differences in the distribution of

two different respiratory infections affecting turtles in the Mojave Desert (Berry et al.,

2015). In some cases, due to restrictions on the sampling locations being identical

within the Syrjala test, preliminary data binning has been carried out (Chetverikov

et al., 2018; McAdam et al., 2012). Unfortunately, depending on the granularity in

the binning of the data, the simulations detailed in Chapter 6 show that the results

can be contradictory. Chiu and Liu (2009) also summarized several other proposed

generalizations of the Cramér-von Mises test.

The Syrjala test, while limited to two-sample tests with identical sampling lo-

cations, provides some of the inspiration to multiple proposed generalizations and

modifications, called the modified Syrjala tests, which are discussed in Chapter 5.

These proposed modifications to the Syrjala test not only make the original test more

generally applicable, but are also shown to be more powerful and more conservative

than alternative methods, including the original Syrjala test (see Chapter 6).

2.2.1 The Syrjala Test

Stephen E. Syrjala proposed a test for differences in the spatial distribution of

two groups as a generalization of the univariate Cramér-von Mises test to the bi-



14

variate setting (Syrjala, 1996). The test is designed for determining whether there

is a difference between the locations of two populations at a single point in time, or

whether there is a difference between the locations of the same population at two

points in time. However, the test requires the two samples both occur at an identical

set of predefined locations. Furthermore, “The random variable in this case is the

observed density at the sampling location, not the location itself.” (Syrjala, 1996).

Hence, the hypotheses under consideration for the Syrjala test can be stated as follows:

H0: The normalized distributions of the populations are equal across the study

area.

Ha: There is some unspecified difference in the normalized population distribu-

tions.

Adjusting the notation from Syrjala (1996), let di(xj, yj) denote the density of

observations for sample i; i = 1, 2, at sample locations (xj, yj); j = 1, . . . , n, rel-

ative to their position on a bounding rectangle A, where n is the total number of

sampling locations. Then, Di =
∑n

j=1 di(xj, yj) is the sum of all densities across A,

and γi(xj, yj) =
di(xj ,yj)

Di
are the normalized densities. With these, we can construct

Γi(x, y) =
∑

xj≤x,yj≤y γi(xj, yj) which is analogous to the bivariate empirical distribu-

tion function. Figure 3 shows a visualization of densities of observations at each of

the identical sampling locations for two separate samples.

Similar to the Cramér-von Mises permutation test, the Syrjala first calculates a

statistic (Ψ) on the non-permuted samples.

Ψ =
n∑

j=1

[Γ1(xj, yj)− Γ2(xj, yj)]
2 .
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Fig. 3: An example of identical sampling locations with differing location densities
from two spatial distributions inspired by Benayas et al. (2010), page 312. Larger
radii of the circles represent greater densities at each of the sampling locations.

Because this construction uses points near the origin more often than points in

the center, a common adjustment to Syrjala’s test is

Ψ̃ =
1

4

4∑
c=1

Ψc,where Ψc =
n∑

j=1

[Γ1(xc,j, yc,j)− Γ2(xc,j, yc,j)]
2 ,

and (xc,j, yc,j) are positive coordinates defined relative to each of the four corners of

A (Syrjala, 1996).

Next, permutations of the data are made by choosing to swap or leave γ1 (xj, yj)

and γ2 (xj, yj) at each (xj, yj) locations. This results inM = 2n possible permutations

of the data. Test statistics Ψ̃k; k = 1, . . . ,M , are calculated for each of the permu-

tations of the data. The Ψ̃k calculations are identical to that of Ψ̃ (including the

four rotations) except that they are computed from the permuted data. The p-value

is calculated as the proportion of permuted statistics Ψ̃k which are greater than or

equal to the original statistic Ψ̃ that is computed from the non-permuted data, i.e.,
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p-value =

M∑
k=1

(
IΨ̃k≥Ψ̃

)
+ 1

M + 1
.

It should be noted that in practice only a subset ofM ′ ≪ M (typicallyM ′ ≈ 999)

possible permutations are used to calculate the level of significance due to computa-

tional limitations.

The Syrjala test has been implemented in the ecespa R package (de la Cruz Rot

et al., 2008) for the R software environment for statistical computing and graphics (R

Core Team, 2019).

However, depending on the data aggregation steps (such as binning) the results

of the Syrjala test can be contradictory (see Chapter 6). Proposed modifications to

the Syrjala test in Chapter 5 eliminate the restriction for the sampling locations to

be identical and the need to bin the data. A simulation study in Chapter 6 suggests

that our modified versions of the Syrjala test are in general more powerful and more

conservative as compared to the original Syrjala test.

Furthermore, McKinney and Symanzik (2019) applied both the Syrjala test and

one of the modified Syrjala tests to a study involving eye tracking and posture per-

ception of individuals at Utah State University (USU) (Symanzik et al., 2017, 2018;

Studenka et al., 2020; Coltrin et al., 2020; McKinney and Symanzik, 2019, 2021). The

modified Syrjala test showed stable results as compared to differing results from the

original Syrjala test depending on the data binning technique employed.

2.2.2 The E-Statistics (Energy) Test

There exists a variety of published methods which employ pairwise distances

between observations (Hall and Tajvidi, 2002; Baringhaus and Franz, 2004). Within

this group, several publications have centered on a concept of “energy” which can be
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measured on a data set (Zech and Aslan, 2003; Székely and Rizzo, 2004; Rizzo and

Székely, 2016). In addition, the Székely and Rizzo (2004) energy test is rotational-

invariant and can be applied in the univariate or multivariate setting.

Inspired by Newton’s gravitational potential energy, Rizzo and Székely (2016)

proposed a class of “energy” statistics which measure the distance between distribu-

tions of random vectors. Consequently, not only can the statistic be applied in the

two-sample case, but it can also be used to measure the difference between sampled

and hypothesized distributions. Furthermore, applications of the statistic have been

found within testing for independence by distance covariance, extensions to analy-

sis of variance, generalizations of clustering algorithms, change point analysis, and

feature selection (Rizzo and Székely, 2016) to name a few.

If we let X⃗ = {X̃1, X̃2, . . . , X̃d} and Y⃗ = {Ỹ1, Ỹ2, . . . , Ỹd} be independent random

vectors which belong to Rd with CDFs FX and FY , respectively, then the energy

distance between FX and FY is defined as

D(FX , FY ) =

√
2E||X⃗ − Y⃗ || − E||X⃗ − X⃗ ′|| − E||Y⃗ − Y⃗ ′|| ≥ 0,

where E is the expected value, || · || is the Euclidean norm, and X⃗ ′ and Y⃗ ′ are

independent and identically distributed copies of X⃗ and Y⃗ , respectively. In practice,

X⃗ ′ and Y⃗ ′ are obtained by the bootstrap (Davison and Hinkley, 1997) re-sampling

method.

Similar to potential energy, which is zero if and only if the gravitational cen-

ter of two objects coincide, D(F1, F2) = 0 if and only if F1 = F2. Additionally,

just as potential energy increases between two objects as the distance between their

gravitational centers increase, D(F1, F2) will increase as F1 and F2 move apart from

each other. Hence, as a well defined metric the energy distance can characterize the
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equality of distributions.

Therefore, for the multivariate case, let X⃗1, X⃗2, . . . , X⃗n1 and Y⃗1, Y⃗2, . . . , Y⃗n2 be

random samples of random vectors in Rd, (d > 1). Rizzo and Székely define the

energy statistic or “E-statistic” (En1,n2) as

En1,n2 =
2

n1n2

n1∑
i=1

n2∑
j=1

||X⃗i − Y⃗j||

− 1

n2
1

n1∑
i=1

n1∑
k=1

||X⃗i − X⃗k||

− 1

n2
2

n2∑
j=1

n2∑
l=1

||Y⃗j − Y⃗l||,

and show that En1,n2 = D2(F1, F2) = 0 if and only if F1 and F2 have the same

distribution (i.e., F1 = F2).

Furthermore, the test statistic

TE =
n1n2

n1 + n2

En1,n2

converges in distribution to a quadratic form of independent standard normal random

variables (Rizzo and Székely, 2016). Since the null distribution of TE is dependent

on the distributions of X1 and X2, the test (similar to those described in Chapter 2)

is implemented as a nonparametric permutation test in the energy R package (Rizzo

and Szekely, 2019). Rizzo and Szèkely’s energy test is included in the simulation

comparisons detailed in Chapter 6.

2.2.3 The Kernel Maximum Mean Discrepancy Test

Gretton et al. (2012) proposed a statistic called the maximum mean discrepancy

(MMD), which measures the largest difference in expectations over functions in the
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unit ball of a reproducing kernel Hilbert space (RKHS). Their two-sample test lever-

ages a technique where the distributions of the two samples are embedded in a RKHS

(Song, 2008) by use of a characteristic kernel function.

Kernel Functions

Given n ∈ N and c1, . . . , cn ∈ R, any symmetric function f : X × X → R is a

kernel provided that for all x1, . . . , xn ∈ X the following holds:

n∑
i=1

n∑
j=1

cicjf(xi, xj) ≥ 0.

A kernel function (or simply kernel) (K(·, ·)) can be viewed as a special kind of

similarity measure that takes as input two elements from the same space and outputs

a real number:

K(x, x′) : X × X → R,

where x and x′ can be considered here as two realizations of a random variable X.

Kernels possess desirable mathematical properties (Song, 2008), including the ability

to be decomposed into the inner product of a feature space (H) mapping (ϕ) between

two elements in X :

K(x, x′) = ⟨ϕ(x), ϕ(x′)⟩H .

Kernels can be especially useful (e.g., their use in support vector machines) since

they allow linear classification models to be fit to the feature space representation

of the data without the necessity of actually computing ϕ(x), which can be compu-

tationally expensive. Additionally, the Moore-Aronszajn theorem (Aronszajn, 1950)

guarantees the existence of a unique RKHS provided a given kernel. If the kernel

used is “characteristic”, meaning if the mapping of the family of distributions over
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the domain of the random variable onto the feature space is injective, then each dis-

tribution can be uniquely represented in the RKHS. This will preserve all statistical

features of the distributions within H.

Computation of the MMD

Provided two samples of size n1 and n2, and a given kernel (K) the MMD is

estimated by

M̂MD(F1, F2) =
1

n2
1

n1∑
i=1

n1∑
k=1

K(x1,i, x1,k)

+
1

n2
2

n2∑
j=1

n2∑
l=1

K(x2,j, x2,l)

− 2

n1n2

n1∑
i=1

n2∑
j=1

K(x1,i, x2,j).

The test is conducted as a nonparametric permutation test using the kmmd func-

tion within the kernlab R package (Karatzoglou et al., 2019). The kmmd function uses

the radial basis function or Gaussian kernel, K(x, x′) = exp
(
− ||x−x′||2

2σ2

)
, as the default

kernel (where σ is a free parameter). Gretton’s kernel maximum mean discrepancy

test is also included in the simulation comparisons detailed in Chapter 6.

2.2.4 The Friedman-Rafsky Test

In an effort to generalize the idea of ordering to mulitvariate data, Friedman

and Rafsky (1979) proposed a graph based generalization to the Wald and Wolfowitz

(1944) test. While the Wald and Wolfowitz test (see Chapter 2 for more detail)

considers adjacent observations of the same class as a “run” in its test statistic,

the Friedman-Rafsky test generalizes a “run” to the multivariate setting by use of a

minimum spanning tree (MST). Friedman and Rafsky also use MSTs to provide a

way to apply the Kolmogorov-Smirnov test (Kolmogorov, 1933) to the multivariate
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setting.

In graph theory, an MST (also called a minimum weight spanning tree) is defined

as subset of the edges of a connected, edge-weighted undirected graph that connects

all of the vertices together, with the minimum possible sum of all edge weights, and

without any cycles (Wilson, 1996). An MST is obtained by use of the greedy al-

gorithm, and is unique if there are no ties among all of the edge weights (Wilson,

1996). Figure 4(a) shows how the bivariate data values from two samples (depicted

with blue circles and red squares) become a connected graph (in Figure 4(b)) by use

of some difference measure (e.g., Euclidean distance). The MST highlighted within

Figure 4(b) is obtained by use of the greedy algorithm. The Wald-Wolfowitz version

of the Friedman-Rafsky statistic is then computed by removing all edges which con-

nect points from separate samples and summing the total number of remaining trees

(including individual data values with no edges). This is always one more than the

number of edges removed (Friedman and Rafsky, 1979). Small test statistics provide

evidence against the null-hypothesis that the two samples share the same distribution.

In Figure 4(c), the computed Wald-Wolfowitz version of the Friedman-Rafsky statis-

tic is five. Additionally, the statistic is usually standardized before being used within

a nonparametric permutation test such as those described in Sections 2.1 and 2.2.

Furthermore, with the construction of an MST on the pooled samples, Friedman

and Rafsky extend the Kolmogorov-Smirnov test (Kolmogorov, 1933) by providing

a way to assign univariate ranks to each sample point by use of “rooted” trees and

computing the “depth” of each node within the rooted tree (Friedman and Rafsky,

1979). Once the ranks are obtained the maximum difference in the univariate ECDFs

of the ranks between the samples are computed (see Section 2.1) for more details).

Both the Wald-Wolfowitz and Kolmogorov-Smirnov versions of the Friedman-

Rafsky test can be used within the GSAR R package (Rahmatallah et al., 2017)
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(a) (b) (c)

Fig. 4: A visualization of the Wald-Wolfowitz version of the Friedman-Rafsky statis-
tic. Subplot (a) shows bivariate data values from two samples (depicted with blue
circles and red diamonds), which become a connected graph in subplot (b) by use of
some difference measure (e.g., Euclidean distance). Subplot (b) also highlights the
MST obtained by use of the greedy algorithm. Subplot (c) shows all of the remaining
sub-graphs (also trees) obtained by removing all edges which connect points from
separate samples. This provides us with a means to compute the Friedman-Rafsky
statistic by summing the total number of remaining trees (including individual data
values with no edges). The Wald-Wolfowitz version of the Friedman-Rafsky statistic
computed in (c) is five.

available through the Bioconductor distribution (https://git.bioconductor.org/

packages/GSAR). The Friedman and Rafsky’s Kolmogorov-Smirnov generalization is

included in the simulation comparisons detailed in Chapter 6.

https://git.bioconductor.org/packages/GSAR
https://git.bioconductor.org/packages/GSAR
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CHAPTER 3

Overview of Eye Tracking Analyses

An overview of eye tracking analyses is provided in this chapter, including a

treatment of fixation points (Section 3.2), areas of interest (Section 3.3), gaze tran-

sitions (Section 3.4), as well as a general analysis and overview of commonly used

visualizations (Section 3.5).

3.1 Overview

The overall goal of eye-tracking analyses is to gain insight into what subjects

give their attention to. Due to the rich spatial and temporal information that can be

collected through eye-tracking analyses, many measures have been created to address

a wide variety of hypotheses. When a subject focuses their visual attention on a

single point, that point is called a “true” fixation point. To estimate these “true”

fixation points, eye-tracking devices record points called gaze points (among other

recorded measures). If an eye-tracking device records gaze points at a frequency of 30

Hz, the output will produce approximately (depending on the device) 30 gaze points

per second in the data. Aggregations of gaze points produce fixation point estimates.

Another commonly recorded measure is the saccade. A saccade occurs when a subject

transitions from one fixation point to another (Holmqvist et al., 2011).

While not comprehensive, Table 1 shows a list of other commonly measured

variables and statistics in eye-tracking analyses along with brief definitions. How-

ever, keep in mind that these definitions are not consistent across the literature.

For example, fixation point estimates are referred to by a variety of names includ-

ing fixation points (Duchowski, 2007; Kumar et al., 2018; Matsuda and Takeuchi,
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2012), fixation locations (Deniz, 2016; Duchowski, 2007; Hessels et al., 2016), fixa-

tion positions (Goldberg and Helfman, 2010; Hessels et al., 2016), or simply fixations

(Blascheck et al., 2017; Deniz, 2016; Duchowski, 2007; Hessels et al., 2016; Holmqvist

et al., 2011; Matsuda and Takeuchi, 2012).

Table 1: Brief definitions of commonly measured variables/statistics in eye-tracking
analyses taken from Holmqvist et al. (2011), Duchowski (2007), and Blascheck et al.
(2017).

Common Variables/Statistics Definition
Gaze point Coordinates measured by the eye-tracking de-

vice indicating what the subject is looking at in
the viewing region.

Fixation point estimate (or
fixation point)

An aggregation of gaze points estimating where
the subject is staring at (or fixating on) in the
viewing region.

Area of interest (or AOI) Defined region (or object) in the observation
area of a subject that the researcher is inter-
ested in.

Number of fixation points
(per subject or across sub-
jects)

The number of fixation points on an object.

Fixation rate (per subject or
across subjects)

The proportion of fixation points on an object.

Fixation duration The length of time a subject fixated or stared
at an object.

Fixation duration mean (per
subject or across subjects)

The average fixation duration for an object.

Time to first fixation point The length of time before a subject first fixates
on a particular object.

Saccade A transition from one fixation point to another.
Saccade velocity The speed with which the eyes transition from

one fixation point to another.
Number of revisits The number of fixation transitions (saccades) to

a previously fixated object.
Scanpath A sequence of fixation points.
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3.2 Fixation Points

However, raw data (e.g., the gaze points) collected with eye tracking devices con-

tains noise caused by two sources: the eye tracking device and/or the subject. For

example, variation in eye tracking algorithm calculations cause a random scattering

of gaze points around the true fixation point of the eye. Additionally, major pertur-

bations within the data can arise in the event that the subject blinks. Consequently,

aggregating gaze points into fixation point estimates is a common technique for elim-

inating noise in the data. Two main classes of techniques used in accomplishing this

involve either (1) averaging gaze points into a fixation point estimate (also called

position-variance techniques by Duchowski (2007) and dispersion-based fixations by

Holmqvist et al. (2011)), or (2) separating gaze points using thresholds on saccade

velocities (also called saccade velocity techniques) (Duchowski, 2007; Holmqvist et al.,

2011).

Yarbus (2013) modeled a formula for the angular velocity of the eye movement

during a saccade. An angular velocity threshold given as an example by Duchowski

(2007) is 30 degrees per second. However, Holmqvist et al. (2011) mentioned that

typical saccade velocity thresholds range from 20 to 130 degrees per second in the

literature. If time thresholds are specified in position-variance fixation points, then

researchers should take into consideration that Irwin (1992) established the minimum

theoretical fixation duration for the human eye as 150 milliseconds. However, accord-

ing to Duchowski (2007), “The position-variance and velocity-based algorithms give

similar results, and both methods can be combined to bolster the analysis by checking

for agreement.”
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3.3 Areas of Interest

Next, Areas Of Interest (AOIs), or subregions of the observation area, are of-

ten defined to address more detailed hypotheses. A variety of techniques are being

used to create AOIs in the current literature. Some researchers define AOIs using

regular grids across the observation area, e.g., see Figure 5 inspired by Matsuda and

Takeuchi (2012). This is useful since these AOI are content independent, and conse-

quently, easily generated. However, inferential statistics have shown to be dependent

on the granularity of the grid (Duchowski, 2007; McKinney and Symanzik, 2019).

In contrast, other researchers have elected to define AOIs more subjectively, such as

hand drawn areas over facial features found in Cantoni et al. (2012).

Hessels et al. (2016) compared these and several other different AOI constructions

and noted their respective pros and cons. They concluded that the most objectively

defined AOIs are constructed using the Voronoi (1908) method. However, Goldberg

and Helfman (2010) suggested that the size of the AOI of an image object should

depend on three factors: “(1) the importance of capturing every fixation [point] on

that object, (2) the amount of white space surrounding the object, and (3) expected

variance in fixation positions [(points)] across participants.” Holmqvist et al. (2011)

also pointed out that the minimal AOI size is limited by the precision and accuracy

of the recorded data, which the Voronoi method does not take into consideration if

tessellation centroids are defined close to each other.

3.4 Gaze Transitions

If researchers consider the order in which subjects viewed the AOIs as important

to their analysis, then transition matrices can be calculated to depict the observed

probabilites of transitions from one AOI to another (Holmqvist et al., 2011). Krejtz

et al. (2015) detailed the computational steps for constructing transition matrices.
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A1 A2 A3 A4 A5
B1 B2 B3 B4 B5
C1 C2 C3 C4 C5
D1 D2 D3 D4 D5
E1 E2 E3 E4 E5

Fig. 5: An overlaid 5×5 grid on a viewing region (a website https://ericmckinney.
net/) inspired by Matsuda and Takeuchi (2012), page 111.

Alternatively, Markov models (Rabiner and Juang, 1986) can be constructed to

estimate the probabilities of transitioning from one AOI to another. Harris (1993)

showed that AOI transition data is readily modeled by a so-called stationary, re-

versible first-order Markov model. This result, replicated by Gordon and Moser

(2007), Epelboim and Suppes (2001), and Pieters et al. (1999), can be interpreted

as showing that the probability of fixating on an object depends considerably on the

object of the immediately preceding fixation point, but not on the objects fixated

further back in the fixation sequence (Holmqvist et al., 2011).

Similarly, transition entropy can be analyzed to statistically compare fixation

point transitions (Krejtz et al., 2015; Holmqvist et al., 2011). Transition entropy

requires construction of the transition matrices in addition to their transformation

into conditional probability matrices for which conditional transition entropy Ht is

calculated,

Ht = −
nAOI∑
i=1

p̃i

nAOI∑
j=1

p̃ij log2 p̃ij,

where p̃i is the observed probability of viewing the ith AOI, p̃ij is the conditional

probability of viewing the jth AOI given the previous viewing of the ith AOI, and

nAOI is the number of AOIs (Krejtz et al., 2015).

https://ericmckinney.net/
https://ericmckinney.net/
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Hence, entropy Ht provides a measure of statistical dependency in the spatial

pattern of fixation points represented by the transition matrix, and may be used to

compare one matrix to another. (Note that a uniform grid for defining AOI is not

necessary in order to compute the transition entropy.) Weiss et al. (1989) noted that

a small Ht suggests dependencies between the fixation points, whereas a large Ht

suggests a random scanning pattern.

3.5 General Analysis and Visualizations

Another employed measure related to spatial distribution of fixation points is the

Nearest Neighbor Index (NNI), as described by Clark and Evans (1954). The NNI

is based on the “distance from an individual to its nearest neighbor, irrespective of

direction.” The NNI (N ) describes the spatial distribution of points, e.g., fixation

points, as either ordered (N > 1), random (N = 1), clustered (N < 1), or maximally

aggregated, i.e., singular (N = 0). For n points, the NNI is calculated as

N =
2
√
ρ

n

n∑
i=1

ri

where ri is the distance from the ith (fixation) point to its nearest neighbor, and ρ

is the density of the observed distribution, i.e., ρ = n/A where A is the observation

area. Holmqvist et al. (2011) discussed a variety of other measures including the

convex hull area, the Mannan similarity index (Ruddock et al., 1995), the attention

map difference, and the Kullback-Leibler distance (Kullback and Leibler, 1951).

Duchowski (2007) pointed out that statistical analyses generally consist of an

analysis of variance (ANOVA) on the dependent variables collected during the eye

tracking experiment, e.g., fixation durations, number of fixation points, etc., depend-

ing of course on the experimental design and its hypotheses.

In a comparison of a variety of eye-tracking analysis visualizations (categorized
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as AOI based, point based, or both), Blascheck et al. (2017) indicated that variations

of heatmaps and scanpath graphs are among the most commonly used.
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CHAPTER 4

The Utah State University Posture Study

The Utah State University (USU) Posture Study aims at answering, among other

hypotheses, the following question, “Does judging the action capabilities of another

person depend on one’s own experiences?” Specifically, is there a significant difference

between subjects with and without recent yoga experience expressed in what those

subjects look at when judging the stability of a posture?

While this chapter outlines the setup, data collection process, and data prepro-

cessing conducted during the study (see Section 4.1), the USU Posture Study has

already been the subject of several publications (Symanzik et al., 2017, 2018; Stu-

denka et al., 2020; Coltrin et al., 2020; McKinney and Symanzik, 2019, 2021). These

other publications provide preliminary results of the study along with additional de-

tails. Further analyses based on the new Syrjala tests conducted on the collected

eye-tracking data are provided in Chapter 7.

4.1 USU Posture Study Details

A participant in the study was considered a “treatment” subject if they indicated

that they have been practicing yoga for at least two hours a week on average for the

past three months. A participant was a “control” subject if they indicated otherwise.

In total, the data from 20 treatment and 20 control subjects was successfully collected

in the study.

After being fitted with an eye-tracking device (as seen in Figure 6) from ETMO-

BILE (http://www.argusscience.com/ETMobile.html) and successful calibrated,

each subject was randomly shown a series of 22 postures being held by an actor and

http://www.argusscience.com/ETMobile.html
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Fig. 6: An example of a subject wearing the ETMOBILE eye-tracking device. The
eye tracker has one forward facing camera and one infrared camera that tracks the
eye’s movement by use of a transparent mirror.

asked, “How long do you think this person could hold this posture?” Appendix C

includes figures of each of the postures shown to subjects (including the calibration

images). Figure 7 demonstrates how the data was recorded. After the 22nd posture,

the subject’s eye-tracking calibration was reassessed to ensure valid data was collected

during the entire trial. Figure 8 shows the lineups of the 22 postures shown to the

40 subjects. Within the figure, each row represents a subject, indicated as either a

treatment (T) or a control (C) followed by an index number. The columns assign a

“View Number” (V followed by an index) representing the order in which the sub-

jects viewed the postures. Views one and 24 (V1 and V24) were identical calibration

images (Figures 90 and 113 in Appendix C) for all of the subjects. Notice that each

treatment subject had a corresponding control subject who was shown the 22 pos-

tures in the same order. However, the orders were randomized across subject-pairs

within each group.
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Fig. 7: A demonstration of how a subject’s eye-tracking data is being recorded while
the subject determines how long an actor could stay balanced in the displayed posture.

Among other variables, the eye tracker recorded the x and y coordinates of the

subject’s gaze points in 30 Hz video output. Once extracted from the individual video

frames, the gaze points for each of the 22 postures were mapped to master images

using an algorithm and software developed by Li (2017). The subjects also stood on

a force plate which measured postural sway throughout each subject’s recording.

During the data collection process, it was necessary to replace data from several

participants with data from new participants for a variety of reasons. Some of the

reasons were more technological and others were due to confounding factors arising

during the recording of the data. Overall, eight treatment and two control partici-

pants were replaced until a successful recording was achieved. In total, 57 subjects



33
View Numbers

V2 V3 V4 V21 V22 V23
Subject

T1 · · ·

C1 · · ·

T2 · · ·

C2 · · ·

...
...

...
...

...
...

T20 · · ·

C20 · · ·

Fig. 8: A visualization of the posture lineups. The rows represent each subject
indicated as either a treatment (T) or a control (C) followed by an index number.
The columns assign a “View Number” (V followed by an index) representing the order
in which subjects viewed the postures. Views one and 24 (V1 and V24) were identical
calibration images (Figures 90 and 113 in Appendix C) for all of the subjects. Notice
that each treatment subject had a corresponding control subject who was shown the
22 postures in the same order. However, the orders were randomized across subject-
pairs within each group.
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participated 17 of which were deemed unfit for subsequent data processing. Most

often, if a participant’s initial or final calibration data was not properly recorded, a

new participant was recruited and provided with the same slide ordering (and Subject

ID) as the previous participant. Two treatment participants did not complete the ex-

periment due to feeling dizzy. Other reasons for replacing participant’s data include

the following: participants unconsciously manipulating the eye-tracking equipment

during the experiment, data corruption during removal of the eye-tracking device,

and miscommunication between participants and the data recorder. In the end, only

participants who followed the experiment instructions, provided congruent initial and

final calibration data, and who’s eye-tracker recordings demonstrated a clean capture

of the participant’s eye movements throughout the experiment were used in subse-

quent analyses. Otherwise, their data was replaced by data from a new participant.

Figure 9 shows a side-by-side comparison of the gaze point scatterplots. The com-

parisons are made between gaze scatterplots for posture IDs 2 (top row), 20 (middle

row), and 19 (bottom row), which are analyzed further in Sections 7.1.2 and 7.1.4.

While the top row compares all of the points between the treatment (left) and control

(right) groups, the middle and bottom rows compare gaze scatterplots between two

individual subjects.
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Fig. 9: Comparisons of the gaze scatterplots for posture IDs 2 (top row), 20 (middle
row), and 19 (bottom row), which are analyzed further in Sections 7.1.2 and 7.1.4.
While the top row compares all of the points between the treatment (left) and control
(right) groups, the middle and bottom rows compare gaze scatterplots between two
individual subjects.



36

CHAPTER 5

Modifications to the Syrjala Test

This chapter details several proposed modifications to the Syrjala test, which

is introduced in Section 2.2.1. The modifications not only make the new tests more

generally applicable, but several are also shown to be more powerful and more conser-

vative than alternative methods, including the original Syrjala test. The modifications

include lifting the restriction for identical sampling locations between the two samples

(Section 5.1), exploration of six test statistics (also in Section 5.1), a generalization

to the rotations within the original Syrjala test (Section 5.2), the introduction of

toroidal shifts within the test (Section 5.3), and a combination of both rotational and

toroidal shifts (Section 5.4). Section 5.5 details how these modifications fit within the

context of the test being a permutation test.

5.1 Motivation and Details

The Syrjala (1996) test checks for equality between normalized distributions from

bivariate two-sample data. Furthermore, “The random variable in this case is the

observed density at the sampling location, not the location itself.” (Syrjala, 1996).

Consequently, it requires the two samples both occur at an identical set of predefined

locations. The test also suffers from being overly conservative (Fuller et al., 2006).

While useful in its own right, researchers have attempted to apply the Syrjala

test to other scenarios by use of data aggregation steps (Chetverikov et al., 2018;

McAdam et al., 2012). However, the Syrjala test has been shown to depend on the

data aggregation steps such as binning (McKinney and Symanzik, 2019).

Four modifications are proposed for the Syrjala test: (1) removing the restriction
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of identical sampling locations between the two samples, (2) exploring three different

weights for both the squared and absolute differences in the empirical cumulative

distribution functions (i.e., six total combinations of weights and differences), (3)

extending the rotational component of the original Syrjala test to higher than four

rotations (discussed in Section 5.2), and (4) implementing the use of toroidal shifts of

the data within the test (discussed in Section 5.3). A combination of both the rota-

tional and toroidal shift modifications is detailed in Section 5.4. These modifications

differ from those proposed by McAdam et al. (2012) who extended the Syrjala test

to telemetry data. No other proposed modifications to the Syrjala test were found in

the literature.

Extending the notation introduced in Chapter 2, let (X1,1, Y1,1), (X1,2, Y1,2), . . . ,

(X1,n1 , Y1,n1) and (X2,1, Y2,1), (X2,2, Y2,2), . . . , (X2,n2 , Y2,n2) be two independent ran-

dom samples with unknown distribution functions F1(x, y) and F2(x, y) and bivariate

empirical cumulative distribution functions (ECDFs) Γ∗
1(x, y) and Γ∗

2(x, y), respec-

tively. Then the hypotheses under consideration are as follows:

H0: F1(x, y) = F2(x, y) ∀(x, y)

Ha: F1(x, y) ̸= F2(x, y) for at least one coordinate pair (x, y).

In contrast to the Syrjala test, Γ∗
1(x, y) and Γ∗

2(x, y) in this test are evaluate at

each sampling location within their respective samples instead of at identical sampling

locations from the two samples. Also let, nT = n1 + n2 and Dg,k = Γ∗
1(xg,k, yg,k) −

Γ∗
2(xg,k, yg,k); g = 1, 2 and k be the observation index. From here, a series of six

statistics are proposed as follows:

(2) ξDWS =
n1

nT

n1∑
i=1

[D1,i]
2 +

n2

nT

n2∑
j=1

[D2,j]
2
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(3) ξUWS =

n1∑
i=1

[D1,i]
2 +

n2∑
j=1

[D2,j]
2

(4) ξCWS =
n2

nT

n1∑
i=1

[D1,i]
2 +

n1

nT

n2∑
j=1

[D2,j]
2

(5) ξDWA =
n1

nT

n1∑
i=1

|D1,i|+
n2

nT

n2∑
j=1

|D2,j|

(6) ξUWA =

n1∑
i=1

|D1,i|+
n2∑
j=1

|D2,j|

(7) ξCWA =
n2

nT

n1∑
i=1

|D1,i|+
n1

nT

n2∑
j=1

|D2,j|

These statistics explore the use of three different types of ECDF weightings,

namely, double (DW) (Equations 2 and 5), uniform (UW) (Equations 3 and 6), and

complementary (CW) (Equations 4 and 7) weightings along with squared (S) (Equa-

tions 2–4) vs. absolute (A) (Equations 5–7) differences between the ECDFs. The six

statistics are chosen to further explore the effects of squared vs. absolute ECDF dif-

ferences along with a series of weightings of the respective differences. The respective

statistics (ξDWS, ξUWS, ξCWS, ξDWA, ξUWA, and ξCWA) are referred to generally as ξ∗

statistics. Note that the CWS and CWA statistics were previously called RWS and

RWA in McKinney and Symanzik (2021).

Justification for the names given to each of the weightings can be found in the

context of multi-criteria decision making. If each of the summations across the respec-
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tive sample sizes are considered as separate entities which contribute to the overall

decision of statistical significance, then the summation coefficient weightings in Equa-

tions 2–7 can be considered as a ratio weighting method (Edwards, 1977; Zardari et al.,

2015). Hence, double weightings refers to the scaling ratio n1

nT
being multiplied to the

sum across the first sample index (i), and n2

nT
being multiplied to the sum across the

second sample index (j). Furthermore, these sums are considered “double” weighted

since any difference in the sample sizes, which would result in a differing number of

terms between the sums, would be exaggerated by the ratio of the sample size by

the pooled sample size. Since equal weightings would result in an identical coefficient

which could be factored from both summations resulting in a unnecessary scalar to

the test statistic, the uniform weightings, also called mean weightings (Zardari et al.,

2015), simply omit these scaling ratios. Additionally, complementary weightings ap-

ply the scaling ratios to the opposite sums as the double weightings since n2

nT
is the

compliment of n1

nT
, i.e., n2

nT
= 1− n1

nT
, and vice versa. Complementary weightings have

also been used in other contexts (Rey, 1986; Lai et al., 2005).

Similarities can be seen between Equations 2–7 (especially Equation 3) and the

univariate two-sample Cramer-von Mises test statistic (Chapter 2 Equation 1) from

which the Syrjala test is also an extension of (Syrjala, 1996). However, the assumption

for identical sampling locations found within the Syrjala test has been lifted.

Two additional modifications are studied as well, namely an extension of the

original four rotations (detailed in Section 5.2), and the introduction of a toroidal shift

modification (proposed in Section 5.3). While much more computationally intensive,

a combination of both rotational and toroidal shift modifications is also explored in

Section 5.4.
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5.2 Rotational Modification

Due to the nature of bivariate data, the origin of the bivariate ECDF is defined

as the data value which falls below and furthest to the left of all of the sampled data

in the Cartesian plane. Consequently, the original Syrjala test was rotated four times

as an attempt to remove a dependency of the test on data which lies closer to this

origin. However, the extent to which these four rotations corrected this issue has not

been explored. Therefore, we propose a more generalized statistic which rotates the

sampled data R times (instead of four times). Hence, the test statistic can be written

as

(8) ΨR =
1

R

R∑
r=1

ξ∗r ,

where ξ∗r is a redefined rotational version of one of the six ξ∗ statistics defined by

Equations 2–7, and R is a discrete number of rotations within 360◦. In doing so, a new

ECDF will be generated for each of the r rotations within ξ∗r . Hence, this modification

replaces each Γ∗
1 and Γ∗

2 within Equations 2–7 with Γ∗
1,r and Γ∗

2,r, respectively. When

r = 1 the original orientation of the data is used. Hence, R = 1 is the case when no

rotation is applied to the pooled samples, and R = 4 is the case which the original

Syrjala test employed (four 90◦ rotations).

Our modified test statistic (ΨR) first computes the squared or absolute difference

between the bivariate ECDFs evaluated at all of the data from the first sample. This

sum of squared or absolute differences is weighted depending on the . This process

is repeated for the second sample, and the two weighted sums of squared or absolute

differences are then combined. Next, the data are rotated 360/R degrees, and another

weighted average of the sums of squared or absolute differences of the ECDF values

is computed. This computation is repeated for a total of R rotations (using Γ∗
1,r and
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Γ∗
2,r for each of the r rotations), where each rotation is weighted by 1/R. This is the

computation of the test statistic on the original data.

A visualization of the calculation of our modified Syrjala test can be seen in

Figure 10. The top left graph in Figure 10 highlights three points from the two

samples. The highlighted vertical bars seen between the two ECDFs in the bottom

left graph represent the differences between the ECDFs evaluated at the respective

highlighted points. The remaining two columns in Figure 10 suggest similarly made

calculations (on the same highlighted points), but for rotated versions of the data.

In this case, the data are being rotated every 40◦ for a total of R = 360/40 = 9

rotations. However, only the first two rotations are shown in Figure 10.

It should be noted that the bottom row of graphs in Figure 10 displays only

the marginal ECDFs for each sample (and not the bivariate ECDFs). However,

the difference between overlapping bivariate ECDFs is difficult to represent visually.

Hence, the marginal ECDFs are shown for visualization purposes only. Figure 11

compares the two bivariate ECDFs for the same data used in Figure 10.

Figure 12 outlines the process in which the rotational modification is integrated

into the modified Syrjala tests.



42

●
●●

●
●

●● ●
●

●

● ●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

0 degrees 40 degrees 80 degrees

−6 −4 −2 0 2 4 6 −6 −4 −2 0 2 4 6 −6 −4 −2 0 2 4 6

−6

−4

−2

   0

   2

   4

   6
y

Sample
● 1

2

−6 −4 −2 0 2 4 6 −6 −4 −2 0 2 4 6 −6 −4 −2 0 2 4 6
0.00

0.25

0.50

0.75

1.00

x

ec
df

 v
al

ue Sample

1
2

Fig. 10: A visualization of calculations within the statistics of the modified Syrjala tests. The same three demonstrative
colored points (two from sample one, and one from sample two) are highlighted in the scatter plots (top row) across three
different rotations of the data. The bottom row of graphs highlights three differences (vertical colored bars) between the
ECDFs. Each ECDF difference (below) corresponds to a highlighted scatter plot point (above). While only three points
and differences are highlighted, the calculation involves squared differences between ECDFs across all of the points from
both samples. The bottom row shows differences between the marginal (and not bivariate) ECDFs. This is due to the
difficult nature of visualizing differences in overlapping bivariate ECDFs. Hence, the marginal ECDFs are displayed for
visualization purposes only. A comparison of the bivariate ECDFs is shown in Figure 11.
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Sample 1
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Fig. 11: A visualization of the two bivariate ECDFs for the non-rotated samples
shown in Figure 10.

5.3 Toroidal Shift Modification

McAdam et al. (2012) noticed a reduced emphasis that the Syrjala test places on

observed differences located near the center of the bounding region. This is confirmed

in Chapter 6. Hence, in addition to removing the necessity for common sampling

locations, an additional modification is employed which using toroidal shifts. This

modification also addresses the ECDF origin issue (see Section 5.2). Hence, the

toroidal shift modification is first considered here without the rotational modification.

In the next section, a combination of both the rotational and toroidal modifications

is presented.

The toroidal shift is a well established technique in the spatial statistics litera-

ture (Diggle and Milne, 1983; Upton et al., 1985; Berman, 1986; Dı́az et al., 2008;

Dixon, 2014; Moreno-Fernández et al., 2020), and was first suggested by Lotwick and

Silverman (1982). Upton et al. (1985) defined a toroidal shift, along with its use in

non-parametric statistics. A toroidal shift has been used by Dı́az et al. (2008) in

their generalization of the Ripley (1976) K-function to a spatio-temporal dispersion

measure.
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Fig. 12: A flowchart which displays the process in which the rotational modification is
integrated into the modified Syrjala tests. The psi statistics computed on the original
data and permuted data referred to in the figure are the ΨR and ΨR

l discussed in
Sections 5.2 and 5.5, respectively.
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A toroidal shift is accomplished by first treating the bounding rectangle of the

data as a torus. This is equivalent to forming a bounding rectangle around the data

and wrapping it such that the left and right edges join, and the top and bottom edges

join. This wrapping of the horizontal and vertical axes will form a donut-shaped

torus. Hence, the data on the left edge will now be considered as “close” to the data

on the right edge of the bounding rectangle. This affect is applied similarly to data

near the top or bottom edges of the bounding rectangle.

A common approach (Upton et al., 1985) for achieving the shift is accomplished

by randomly sampling a ∆x ∼ Uniform(0,max(x) − min(x)) and ∆y ∼ Uniform(0,

max(y)−min(y)), and adding ∆x and ∆y to every data value’s x and y coordinate,

respectively. If the shift moves a data value outside of the bounding rectangle, then

the data value will be replaced on the opposite side of the bounding rectangle.

However, in this dissertation the toroidal shift is applied in a slightly different

manner than Upton et al. (1985) in order to ensure that every ECDF of the shifted

data is equally likely. Instead of randomly sampling a ∆x and ∆y, a random data

value is selected as the origin of the toroidal shift. All data values to the left of the

selected data value are shifted horizontally by adding a distance equal to the width

of the bounding rectangle (max(x) − min(x)) to their respective x coordinates. A

similar shift is applied to the data values below the selected data value except the

height of the bounding rectangle (max(y) − min(y)) is added to the y coordinates.

While this results not only in shifted data, but also in a shifted bounded rectangle,

the subsequent ECDF calculations do not depend on the relative position of the data.

Figure 13 shows two subject’s data which undergo the latter described random

toroidal shift. The center plot in Figure 13 shows a random point which is chosen

as the origin of the toroidal transformation. Any point which lies below this toroidal

origin is shifted up equal the height of the bounding rectangle of the data. Similarly,
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Fig. 13: A visualization of two-sample data before (A) and after (D) a toroidal
shift transformation. Plot (B) shows a bounding rectangle around combined samples
along with the randomly selected data value which serves as the origin of the toroidal
shift. Plot (C) shows an intermediate step within the toroidal shift where only the
horizontal shift has occurred. Plot (D) completes the toroidal shift with a subsequent
vertical shift. The data values unaffected by the toroidal shift are indicated by hollow
circles for sample 1 and hollow triangles for sample 2, whereas those affected by the
toroidal transformation are indicated by their respective filled-in shapes.

points which lie to the left of the origin are shifted to the right a distance equal the

width of the bounding rectangle of the data. Consequently, data values which lie

both to the left and below the toroidal origin will experience both of the previously

mentioned shifts.

These new toroidal shifted data provides the basis for an additional modification

to the Syrjala test. After the data are transformed using the toroidal shift, the

test statistic of choice ξ∗t is computed, where ξ∗t is one of the six statistics defined by
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Equations 2–7. As in the rotational modification detailed in Section 5.2, a new ECDF

will be generated for each of the toroidal shifts within ξ∗t . Hence, this modification

replaces each Γ∗
1 and Γ∗

2 within Equations 2–7 with Γ∗
1,t and Γ∗

2,t, respectively.

This calculation can be applied across all possible toroidal shifts, or a large

random subset if all possible shifts are computationally infeasible. This is similar

to the modification shown in Equation 8, except the individual computations are

weighted according to the number of toroidal shifts RT , as seen in the following

equation:

(9) ΨT =
1

RT

RT∑
t=1

ξ∗t .

Figure 14 outlines the process in which a toroidal shift modification is integrated

into the modified Syrjala tests.

A random toroidal shift has been implemented in the spatstat R package (Bad-

deley and Turner, 2005).
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Fig. 14: A flowchart which displays the process in which a toroidal shift modification
is integrated into the modified Syrjala tests. The psi statistics computed on the
original data and permuted data referred to in the figure are the ΨT and ΨT

l discussed
in Sections 5.3 and 5.5, respectively.
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5.4 Combining Modifications

In an effort to remove both the dependency of the Syrjala test on the ECDF’s ori-

gin (see Section 5.2 for more details) while also alleviating the reduced emphasis the

Syrjala test places on the observed differences near the center of the bounding rectan-

gle (McAdam et al., 2012), an additional modification is considered which combines

both the rotational (see Section 5.2) and toroidal shift (see Section 5.3) modifications.

Due to computational efficiency, the rotational modification is applied first within

the test. This also removes the need to recenter the data around the bivariate median

since differences in the bivariate ECDFs computed after the toroidal shift will be

the same regardless of relative position to the origin. Hence, for every rotation of

the combined data, the toroidal modification is applied separately. Consequently,

combining the modifications in Equations 8 and 9 gives us the following equation:

ΨRT =
1

R ·RT

R∑
r=1

RT∑
t=1

ξ∗r,t,

where ξ∗r,t is one of the six statistics defined by Equations 2–7. Similar to Equations 8

and 9, this combined modification redefines Γ∗
1 and Γ∗

2 in Equations 2–7 as Γ∗
1,r,t and

Γ∗
2,r,t, respectively, for each of the r rotations and t toroidal shifts.

Figure 15 outlines the process in which a toroidal shift modification is integrated

into the modified Syrjala tests.

5.5 Permutation Test Computations

Let Ψ∗ be one of the previously discussed test statistics ΨR, ΨT , or ΨRT (see

Sections 5.2–5.4). As a permutation test, the test statistic Ψ∗
l ; l = 1, . . . , Nmax, is

recalculated Nmax = nT !
n1!n2!

times where n1 and n2 are the respective sample sizes,

nT = n1 + n2, and Nmax is the total number of permutations of the sample labeling
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subscripts. However, in practice, computing Ψ∗
l for all l = 1, . . . , Nmax is computa-

tionally infeasible, and a sufficient N ≪ Nmax (e.g., N ≈ 999) are computed instead.

The p-value is calculated as the total proportion of test statistics Ψ∗
l which are

greater than or equal to the statistic Ψ∗ computed from the non-permuted data, i.e.,

p− value =

N∑
l=1

(
IΨ∗

l ≥Ψ∗
)
+ 1

N + 1
.

where IΨ∗
l ≥Ψ∗ is one if Ψ∗

l ≥ Ψ∗ and zero otherwise.
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Fig. 15: A flowchart which displays the process in which a combination of both the
rotational and toroidal shift modifications are integrated into the modified Syrjala
tests. The psi statistics computed on the original data and permuted data referred
to in the figure are the ΨRT and ΨRT

l discussed in Sections 5.4 and 5.5, respectively.
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CHAPTER 6

Simulation Studies

This chapter outlines four simulation studies. The first (in Section 6.2) investi-

gates the effects of two data binning techniques on the outcome of the Syrjala test

(see Section 2.2.1 for more details on the Syrjala test itself), and is an extension of the

research conducted by McKinney and Symanzik (2019). The second (in Section 6.3)

explores the performance of three proposed modifications of the Syrjala test (outlined

in Chapter 5). The third (in Section 6.4) compares the performances of the modified

Syrjala test which employs both the rotational and toroidal shift modifications to four

other multivariate two-sample tests (discussed in Sections 2.2.1–2.2.4) including the

Syrjala test. A fourth simulation (in Section 6.5), which employs multimodal bivari-

ate mixture distributions, demonstrates the appropriateness of applying the modified

Syrjala tests to eye-tracking data. Before each study is discussed in detail, an overview

of the simulation design including generated data structure, reproducibility, and the

use of common random numbers is discussed in Section 6.1.

6.1 Simulation Design

The following subsections outline the setup of the simulation studies including

the structure of the generated data both for when the null hypotheses are true and

otherwise. Additional details are provided on the reproducibility of both the gener-

ated data and simulation results, as well as the use of common random numbers in

order to reduce the overall variability in the simulation results.

Additionally, as the power, false positive rate, conservative or anti-conservative

nature of a test are referred to in this chapter, those definitions are provided here:
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� The power of a test is the probability of rejecting the null hypothesis when the

null is indeed false (Rice, 2006).

� The false positive rate (or type-1 error rate) of a test is the probability of

rejecting the null when the null hypothesis is, in fact, true (Rice, 2006).

� A conservative test is one that rejects the null at a lower rate than the sig-

nificance level (Rice, 2006) when the null hypothesis is true. Hence, an anti-

conservative rate rejects the null at a higher rate than the significance level

when the null hypothesis is true.

6.1.1 Generated Data Structure

For the simulations discussed in Sections 6.2 and 6.3, two realizations of inde-

pendent, uniformly distributed, i.e., completely spatially random (CSR), data were

simulated on [0, 1]× [0, 1] square regions to assess the tests when the null hypothesis

is true. A bivariate CSR datum of this form is generated by assigning two univariate

uniform random values (defined on [0, 1]) to their Cartesian coordinates, respectively.

To assess the tests when the null hypothesis is false, four other bivariate distribu-

tions were employed, each of which was compared to CSR. The four departures from

CSR (also simulated on the [0, 1]× [0, 1] square) were constructed using the following

intensity functions for the heterogeneous Poisson process where the values a1, a2, a3,

and a4 are height parameters.

f1(x, y) = a1 · exp
{
− 20 ·

[
(x− 0.5)2 + (y − 0.5)2

]}
(Center)

f2(x, y) = a2 ·
(
1− exp

{
− 80 ·

[
(x− 0.5)4 + (y − 0.5)4

]})
(Repel)

f3(x, y) = a3 · exp
{
− 5 ·

[
(x− 1)2 + (y − 1)2

]}
(Corner)

f4(x, y) = a4 · exp
{
− 5 · (x− 1)2

}
(Right)
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Let µ be the average number of points within the unit square for the heteroge-

neous Poisson process. For reproducibility, Table 2 shows the values for the height

parameters a1, a2, a3, and a4 that achieve a specified intensity µ for each departure

from CSR. The coefficients within the exponents of each of the intensity functions were

chosen to ensure a sufficient departure from CSR was simulated. These coefficients

also guarantee at least 97% of the volume under each bivariate intensity function lie

within the unit square. For each of the five comparisons (CSR compared with CSR,

Center, Repel, Corner, Right), CSR realizations of 50, 100, 250, and 500 points were

compared to each of four different sample sizes (also 50, 100, 250, and 500) for each of

the comparison distributions. Additionally, ten realizations were generated for each

comparison in the simulation data. Visualizations of the CSR and heterogeneous

Poisson process realizations (with µ = 500 points) using each one of the intensity

functions (referred to as CSR, Center, Repel, Corner, and Right, respectively) can be

seen as a column of graphs in the far right of the figures found in Section 6.2 and 6.3.

However, to pattern the distributions more closely to data recorded in eye-

tracking research, a collection of multimodal bivariate mixture distributions were

chosen for the simulations discussed in Section 6.5. See Section 6.5.1 for more details.

Table 2: A table of the height parameter values (a1, a2, a3, and a4) which achieve
a desired average number of points within the unit square (µ) for each respective
intensity function.

µ a1 a2 a3 a4

50 319 79 319 126

100 639 158 639 253

250 1597 395 1597 632

500 3193 790 3193 1264
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6.1.2 Generated Data Reproducibility

In order to ensure reproducibility of the simulation results, the simulation data

is generated up front with predefined random number seeds. The unique random

number seeds allow the computational researcher the freedom to reproduce any of

the individual data realizations or simulation statistics.

The default random number seeds used within the R computational environment

consist of 626 32-bit integers (see the documentation for the .Random.seed object

in R at https://stat.ethz.ch/R-manual/R-devel/library/base/html/Random.

html). Since these can be unwieldy to handle directly, R provides a set.seed()

function which maps individually provided 32-bit integers to well dispersed random

number seeds. Hence, in order to preserve reproducibility, each of the four charac-

teristics in the data generation process were mapped to integer values which were

then concatenated into a single integer provided to the set.seed() function. The

four characteristics are as follows: (1) the sample size of the first sample (n1), (2) the

distribution shape of the second sample (see Section 6.1.1 for more details), (3) the

sample size of the second sample (n2), and (4) a replication index number. However,

the absolute value of the concatenated integers must be less than 232

2
−1 = 2147483647

in order to fit within 32-bits of memory. (The division by two allows for one bit to

represent the sign of the integer, and the subtraction of one allows for zero to be

represented.) Hence, while allowing room for possible extensions of the simulation,

yet staying within memory limits, the following number of digits, or “slots”, were set

aside for each data generation characteristic, respectively: two, two, two, and four

assigned from left to right. Tables 3–6 show the assigned integer values for each level

of the respective generated data characteristics.

For example, the first replication of two-sample data generated where the first

sample has 500 CSR data values, and the second sample has 50 CSR data values had

https://stat.ethz.ch/R-manual/R-devel/library/base/html/Random.html
https://stat.ethz.ch/R-manual/R-devel/library/base/html/Random.html
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Table 3: A table showing the two digit integer values assigned to the first two slots
of a 32-bit integer for each level of n1.

n1 Assigned Integer

500 01
250 02
100 03
50 04

Table 4: A table showing the two digit integer values assigned to the the third and
fourth slots of a 32-bit integer for each level of sample 2 distribution names.

Sample 2 Distribution Name Assigned Integer

CSR 01
Center 02
Repel 03
Corner 04
Right 05

a set.seed() concatenated integer argument equal to “01-01-04-0001” or 101040001.

Thus, a researcher could easily generate the data necessary and extend the sim-

ulations to broader comparisons, e.g., if a single comparison was of interest between

a CSR distribution with n1 = 25 and a Repel distribution with n2 = 750, additional

two-slot integers could be assigned to these new levels of n1 and n2, say 06 and 07

respectively, and the resulting concatenated integer argument for set.seed() would

be “06-03-07-0001” or 603070001. Hence, keeping track of these integer arguments for

set.seed() allows for the research to be extended in a systematic way which avoids

reusing identical random number seeds in generating additional simulated data sce-

narios.

6.1.3 Common Random Numbers

To reduce the overall variability of the statistics on the simulated data, the

method of common random numbers (CRNs) is employed. CRNs (also called corre-
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Table 5: A table showing the two digit integer values assigned to the the fifth and
sixth slots of a 32-bit integer for each level of approximate n2.

Approx. n2 Assigned Integer

500 01
250 02
100 03
50 04

Table 6: A table showing the four digit integer values assigned to the the seventh
through the tenth slots of a 32-bit integer for each replication number.

Replication Number Assigned Integer

1 0001
2 0002
3 0003
4 0004
5 0005
...

...
10 0010

lated sampling, matched sampling, or matched pairs) are a variance reduction tech-

nique commonly employed in Monte Carlo simulations (Glasserman, 2013; Botev and

Ridder, 2017), and are well established within the statistical simulation community

(Kleijnen, 1975, 1976, 1979). In essence, when making comparisons between different

configurations within a Monte Carlo simulation, CRNs ensure that any one realization

of a random variable is used in the same way across all of the configurations. Hence,

the same randomly generated numbers will be used across all of the configurations of

the experiment, which reduces the overall variation in the simulation statistics.

In the context of our simulation, CRNs are used to reduce variation in the sim-

ulated statistics, such as the Syrjala and modified Syrjala statistics. For example,

instead of producing ten realizations of 500 random points to compute the Syrjala

statistic with one binning technique (described in more detail below), and then pro-



58

ducing another ten realizations of 500 random points to compute the Syrjala statistic

with another binning technique, the same ten realizations for the first binning tech-

nique will also be used with the second binning technique. Thus, if an unusual

observation happened to be sampled within the ten realizations, producing a higher

amount of variation due to sampling, that same unusual observation would be used

across the binning techniques reducing the overall variation due to sampling error in

the individual statistics.

Similarly, CRNs also aids in the comparison of the modified Syrjala tests to one

another. In later sections within this chapter, it is clear that some of the simulated

data for the Repel distribution appears to look similar to the CSR distribution just by

chance. However, all of the modified Syrjala tests being compared will have to handle

this unusual sample simultaneously. Hence, unusual results exhibited across all of the

tests in comparison can be attributed more to chance variation in the data generation

process and less to other differences between the tests. Thus, CRNs also provide a

decrease in computational time since fewer realizations of randomly generated data

are necessary in order to obtain similarly stable results.

Specifically, let X1 = X1,1, X1,2, . . . , X1,n be a vector of independent and iden-

tically distributed random variables. Similarly, let X2 = X2,1, X2,2, . . . , X2,m be a

second vector of independent and identically distributed random variables. Say we

are interested in estimating the difference in two population parameters by use of

the sample statistics T1 = 1
n

∑n
i=1 f(X1,i) and T2 = 1

m

∑m
j=1 g(X2,j), respectively. If

common random numbers are not employed, and the samples are independent, then

the covariance between all X1,i and X2,j is zero, and the variance of the difference in

sample statistics is
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V ar(T1 − T2) = V ar

(
1

n

n∑
i=1

f(X1,i)−
1

m

m∑
j=1

g(X2,j)

)

= V ar

(
1

n

n∑
i=1

f(X1,i)

)
+ V ar

(
1

m

m∑
j=1

g(X2,j)

)

=
1

n2
V ar

(
n∑

i=1

f(X1,i)

)
+

1

m2
V ar

(
m∑
j=1

g(X2,j)

)

=
1

n2

n∑
i=1

V ar (f(X1,i)) +
1

m2

m∑
j=1

V ar (g(X2,j))

=
1

n2

n∑
i=1

V ar (f(X1)) +
1

m2

m∑
j=1

V ar (g(X2))

=
1

n2
nV ar (f(X1)) +

1

m2
mV ar (g(X2))

=
1

n
V ar (f(X1)) +

1

m
V ar (g(X2))

However, notice if we employ CRNs by using the same randomly generated data

across all of our configurations, i.e., if we let X1 = X2 (and n = m), then this will tend

to result in a positive correlation between X1 and X2. In such cases, the independence

between the samples will be removed, and Corr(X1, X2) > 0 ⇒ Cov(X1, X2) > 0 ⇒

Cov(f(X1), g(X2)) > 0 ⇒ −Cov(f(X1), g(X2)) < 0.

Therefore, if we let T ∗
1 and T ∗

2 be the statistics while employing CRNs, then
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V ar(T ∗
1 − T ∗

2 ) = V ar

(
1

n

n∑
i=1

f(X1,i)−
1

n

n∑
j=1

g(X2,j)

)

= V ar

(
1

n

n∑
i=1

f(X1,i)

)
+ V ar

(
1

n

n∑
j=1

g(X2,j)

)

− Cov

(
1

n

n∑
i=1

f(X1,i),
1

n

n∑
j=1

g(X2,j)

)

=
1

n2
V ar

(
n∑

i=1

f(X1,i)

)
+

1

n2
V ar

(
n∑

j=1

g(X2,j)

)

− 1

n2
Cov

(
n∑

i=1

f(X1,i),
n∑

j=1

g(X2,j)

)

=
1

n2

n∑
i=1

V ar (f(X1,i)) +
1

n2

n∑
j=1

V ar (g(X2,j))

− 1

n2

n∑
i=1

n∑
j=1

Cov (f(X1,i), g(X2,j))

=
1

n2

n∑
i=1

V ar (f(X1)) +
1

n2

n∑
j=1

V ar (g(X2))

− 1

n2

n∑
i=1

n∑
j=1

Cov (f(X1), g(X2))

=
1

n2
nV ar (f(X1)) +

1

n2
nV ar (g(X2))

− 1

n2
n2Cov (f(X1), g(X2))

=
1

n
V ar (f(X1)) +

1

n
V ar (g(X2))− Cov (f(X1), g(X2))

will ensure that V ar(T ∗
1 − T ∗

2 ) < V ar(T1 − T2).

However, this is not always the case. If instead a removal of the independence

between X1 and X2 results in a negative correlation, the use of common random
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numbers will back-fire resulting in a greater amount of variability in the difference

between test statistics (Botev and Ridder, 2017). Glasserman and Yao (1992) pro-

vided guidelines for avoiding these situations.

6.1.4 Simulated Test Result Reproducibility

Similar to how random number seeds are used in Section 6.1.2 to preserve the

reproducibility of the generated simulation data, random number seeds are also set

before each simulation test to preserve the reproducibility of the stochastic nature

within each test. The test random number seeds are simply an extension of the gen-

erated data random number seeds, except that the third and fourth digits (hundreths

and thousandths place) are changed from two zeros to a two digit number that cor-

responds to what test is being used. Table 7 shows the assigned integers for each of

the simulation test types.

Thus, a researcher could easily reproduce the simulation test results by using

the same random number seed. For example, the first replication of two-sample data

generated where the first sample has 500 CSR data values, and the second sample

has 50 CSR data values had a set.seed() concatenated integer argument equal to

101040001. Thus, if the modified Syrjala tests which employ both rotations and

toroidal shifts with a toroidal shift threshold of 25 (RotToro25Thrshld) is applied to

this case of generated data, 60 would be added to the third and fourth digits, and the

random number seed for the simulation test would be “01-01-04-6001” or 101046001.

Alternatively, if the modified Syrjala tests employ five rotations and 0.3 proportion

of toroidal shifts, the third and forth digits will have an assigned integer of 23 along

with a negative sign prepended to the seed number: −101042301.
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Table 7: A table showing the two digit integer values assigned to the the third and
fourth slots of a 32-bit signed integer (i.e., seed number) for each type of test. The ∗

symbol indicates when a seed number was also negated (i.e., a negative sign prepended
to the integer) to avoid overlap with other seeds. For all possible combined rotational
and toroidal shift modified Syrjala tests (∗∗) the assigned integer is simply a sum of the
corresponding individual assigned integers for the rotational and toroidal shift test
types, respectively. However, the combined rotational and toroidal shift modified
Syrjala test assigned integers are only negated once, similar to the rotational or
toroidal shift tests. For example, a test which uses five rotations and 0.3 proportion of
toroidal shifts will have an assigned integer of 23 along with a negative sign prepended
to the seed number.

Test Type Assigned Integer

Syrjala 08
Rotational (4 rotations) 10∗

Rotational (5 rotations) 20∗

Rotational (6 rotations) 30∗

Rotational (8 rotations) 40∗

Rotational (10 rotations) 50∗

Rotational (36 rotations) 60∗

Rotational (45 rotations) 70∗

Toroidal Shifts (0.1 proportion of shifts) 01∗

Toroidal Shifts (0.2 proportion of shifts) 02∗

Toroidal Shifts (0.3 proportion of shifts) 03∗

Toroidal Shifts (0.5 proportion of shifts) 04∗

Toroidal Shifts (0.75 proportion of shifts) 05∗

Toroidal Shifts (0.9 proportion of shifts) 06∗

Combined Rotational and Toroidal Shifts ∗∗

RotToro25Thrshld 60
Energy 09
FR-KS 90
Kmmd 90∗
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6.2 The Effects of Data Binning on the Syrjala Test

Due to the necessity of identical sampling locations for the Syrjala test (see

Section 2.2.1 for more details), binning of data has been used in the literature

(Chetverikov et al., 2018; McAdam et al., 2012). Hence, two types of data bin-

ning techniques along with a spectrum of binning granularity are discussed in further

detail in the next subsection. These are incorporated into the simulation study of the

Syrjala test in order to further study their respective effects on test results. This sim-

ulation is an extension of the research presented by McKinney and Symanzik (2019,

2021).

6.2.1 Data Binning for Common Sampling Locations

Before applying the Syrjala test, two different types of binning were applied to

the data, namely regular and random binning. Regular binning consists of dividing

the sample region into a grid of equally sized rectangles. The density of all sample

points within each rectangle was reported at the center of the respective rectangles.

Random binning consists of randomly assigning binning points (using a simple sequen-

tial inhibition process) across the sample region, and assigning each sample point to

the closest random binning point (using Euclidean distance). Within each of these

binning approaches, three levels of granularity were used. Regular binning consisted

of dividing the unit square into 5×5, 10×10, and 20×20 rectangular grids. Random

binning involved randomly assigning 25, 100, and 400 random binning points across

the sample region.

Figure 16 outlines the process in which random number seeds were used in gener-

ating the simulation data used in Sections 6.2–6.4. The different simulation scenarios

consist of comparisons among the generated data structures outlined in Section 6.1.1.

The different binning scenarios referred to in the figure (mainly random or regular
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binning) are outlined above.

Specifically, the process for generating the raw data begins with selecting a two-

sample simulation scenario and corresponding random number seed, e.g., a sample

size is selected for the first sample (from Table 3) which will be CSR, along with the

second sample’s distribution (from Table 4) and size (from Table 5). These scenarios

are replicated ten times each, and the process is repeated for every simulation scenario

(i.e., for every combination of possible first sample size, second sample distribution,

and approximate second sample size). This implies there are a total of 80 different

simulation scenarios (four different values for the first sample size times five different

distributions for the second sample times four different values for the second sample

size). Hence, since each simulation scenario is replicated ten times, a total of 800

two-sample raw data comparisons are saved to disk.

Next, Figure 16 shows a fork in the workflow which represents loading the raw

data in preparation for two subsequent processes. The process on the right side of the

fork is for the simulations for modified Syrjala tests (which employ the processes out-

lined in Figures 12, 14, and 15) and the alternative tests (discussed in Sections 2.2.2,

2.2.3, and 2.2.4). The process on the left side of the fork is for the data binning

process necessary for Syrjala test simulations. Each of the 800 two-sample raw data

comparisons are binned twice (using one of the two methods discussed earlier in this

section) for a total of 1600 two-sample binned data comparisons, which are also saved

to disk before being loaded for the Syrjala test simulations.

6.2.2 Simulation Results

Figure 17 displays a grid of line graphs which summarize the results of a simula-

tion comparing the effect of regular or random data binning (detailed in Section 6.2.1)

on the Syrjala test. The horizontal axis displays which type of binning, either regular
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Fig. 16: A flowchart which displays the process in which random number seeds were
used in generating the simulation data used in Sections 6.2–6.4. The different simu-
lation scenarios consist of comparisons among the generated data structures outlined
in Section 6.1.1. Similarly, the different binning scenarios, mainly random or regular
binning, are detailed in Section 6.2.1.
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(Reg) or random (Ran), was applied to the simulation data. The granularity of the

binning is represented after the Reg (5×5, 10×10, or 20×20) or Ran (25, 100, or

400) horizontal axis tick labels, and are detailed in Section 6.2.1. The grid column

name indicates the CSR sample size (n1), and the grid row indicates the shape of the

second sample. The colors of the lines and symbols indicate the second sample size

(approximate n2).

Looking at all of the comparisons of CSR vs CSR (all of the line graphs in the first

row of Figure 17), we see that the Syrjala test rejected 67 out of 960 (ten iterations

times six binning techniques times four n1 sample size comparisons times four n2

sample size comparisons) tests. In other words, the Syrjala test is rejecting around

7% of the tests. Since we are testing at the 5% significance level, we should expect

to see roughly 5% of tests reject the null hypothesis when it is actually true. Hence,

the Syrjala test is exhibiting anti-conservative behavior.

This result seems to contradict the conservative behavior of the Syrjala test

exhibited in McKinney and Symanzik (2019). However, for the case when the null

hypothesis is true, a much larger number of small sample comparisons are being

made here (960 total tests) as compared to McKinney and Symanzik (2019) (240

total tests). The greater number of false positives here suggests that the performance

of the test may behave differently than what has been previously observed in the

literature (Fuller et al., 2006) when comparing two samples with relatively small

samples sizes.

The remaining rows of graphs show comparisons between realizations of a CSR

process with departures from CSR, i.e., when the null hypothesis is false. In the

second row, realizations of CSR (with sample sizes of 50, 100, 250, and 500 points)

were compared to realizations of a heterogeneous Poisson process called Center (with

50, 100, 250, and 500 sample points, respectively). Overall, the Syrjala test produced
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Fig. 17: A grid of line graphs showing the results of a simulation comparing the effect of two types of data binning (lower
horizontal axis), abbreviated as Reg or Ran, on the Syrjala test. The grid column indicates the CSR sample size (n1), and
the grid row indicates the distribution of the second sample. The point shapes and colors indicate the second sample size
(approximate n2). For example, the bottom left graph shows the number of significant (p-values < 0.05) Syrjala tests (out
of ten tests) on CSR realizations of 50 points with Right realizations of approximately 50, 100, 250, and 500 points. The
granularity of the binning is represented after the Reg (5×5, 10×10, or 20×20) or Ran (25, 100, or 400) horizontal axis
tick labels, and are detailed in Section 6.2.1
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multiple non-significant test results depending on the binning technique and sample

size.

Particularly, CSR vs Center (second row of graphs) shows that in all cases of

random binning using only 25 points the Syrjala test fails to detect all of the differ-

ences. This is also exhibited in regular binning with only a 5×5 grid. However, the

effect is overcome for regular binning as soon as both n1 and n2 are greater than 100.

Nonetheless, this comparison (CSR vs Center) suggests a dependence of the Syrjala

test on the data aggregation step, i.e., the binning must be granular enough to reflect

the deviations from CSR.

This is further suggested in the third row of graphs where realizations of CSR

were compared with departures from CSR called Repel. These comparisons provide an

interesting case since the Syrjala test struggled to indicate every significant difference

across the different sample size comparisons. Again, a dependence on the granularity

of the binning is seen by the non-decreasing nature for all line graphs when both

samples are greater than 50.

Furthermore, the general jump in significant test results becomes more stark as

both sample sizes increase. For example, when n1 = 500 and n2 = 50 the Syrjala

test is only able to detect zero, two, and two significant test results for the regular

binning granularity levels of 5× 5, 10× 10, and 20× 20, respectively, and only one,

one, and two significant test results for the random binning granularity levels of 25,

100, and 400, respectively. However, when n1 = 500 and n2 = 500 the number of

significant Syrjala tests jumps from two to ten and from three to ten when the binning

granularity increases from the smallest to the largest levels of regular (i.e., from 5× 5

to 20× 20) and random (i.e., from 25 to 400) binning, respectively.

Additionally, the Syrjala test is better able to detect differences as the sample

sizes increase. This can be seen in two ways. In general, there is a positive trend in
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the number of significant test results across all values of n1 for a fixed value of n2 and

binning technique. Alternatively, there is a positive trend in the number of significant

test results across all values of n2 for a fixed value of n1 and binning technique. Also

notable are the cases in which either sample size is less than 100. Here, the Syrjala

test is only able to detect at most three out of ten cases across all of the other sample’s

sizes and binning techniques.

Overall, not only does row three in Figure 17 reinforce the observed dependence of

the Syrjala test on the binning technique (also observed by McKinney and Symanzik

(2019)), but it also confirms that the Syrjala test places less emphasis on differences

located near the center of the bounding region which was observed by McAdam et al.

(2012).

In the remaining two rows where realizations of CSR are compared with the

Corner and Right distributions, the Syrjala test was able to detect all significant

differences. This confirms the results established by McKinney and Symanzik (2019).

6.3 Modified Syrjala Tests Simulation Study

Each of the three modifications proposed to the Syrjala test, namely the rota-

tional, toroidal shift, and combination of rotational and toroidal shift modifications

(detailed in Chapter 5), has a parameter (or two in the case of the combined modi-

fications) which is explored within this simulation study. When simulating the mod-

ification which extends the number of rotations of the data, 4, 5, 6, 8, 10, 36, and

45 rotations (within one 360◦ rotation) are employed in this simulation as compared

to the 4, 6, 8, 10, and 36 rotations used in (McKinney and Symanzik, 2019). The

additional rotations of 5 and 45 were included to further ensure stability among the

results. Since the modification which involves only toroidal shifts of the data in-

troduces considerable additional computational load, only subsets of the combined
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two-sample data are randomly selected as origins to the toroidal shifts (instead of

constructing a toroidal shift for each data point). The proportions of randomly se-

lected data values explored in the simulation are 0.1, 0.2, 0.3, 0.5, 0.75, and 0.90.

Naturally, the modification which includes both rotational and toroidal shifts is even

more computationally intensive. While all of the previously employed rotations are

still included, only the proportions 0.1, 0.2, and 0.3 (of randomly selected data val-

ues used as origins of the toroidal shifts) are explored. However, stable results are

exhibited and discussed for these proportions in Section 6.3.3.

Additionally, Section 6.3.4 explores the performance of the combined modified

Syrjala tests when the number of randomly chosen points as origins for the toroidal

shifts are limited to some threshold which is typically much smaller than the pooled

sample size. This restriction eases some of the computational load of the test which

employs both rotational and toroidal shift modifications. It also justifies a default

threshold value for the tests in the R package (see Chapter 8), which guides new users

of the package toward relatively reasonable parameter values.

6.3.1 Rotational Modification Simulation Results

Figure 18 shows the results of the simulation study for the rotational modifi-

cation when using the CWS statistic. The remaining five proposed versions of the

statistic ξ (see Section 5.1 for more details) are also explored. However, since Fig-

ures 18 and 62–66 show almost the same behavior aside from some chance variation,

the latter figures (Figures 62–66) for the DWS, UWS, DWA, UWA, and CWA sim-

ulations (respectively) are provided in Appendix B. Recall from Section 5.1 that the

abbreviations DW, UW, and CW refer to the different types of weightings in the ξ

statistics, i.e., double weighted, uniformly weighted, and complementary weighted,

respectively. The S and A are abbreviations for squared or absolute differences, re-
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spectively, computed between the ECDFs from the two samples. Figures 18 and

62–66 each display a grid of line graphs which depict the number of significant test

results (p-values < 0.05) out of ten tests for each combination of rotational parameter

level (horizontal axes), second sample size (n2, represented by the different colors and

shapes in the line graphs), distribution of the second sample (grid rows), and first

sample size (n1, shown in the grid columns).

In summary, while the squared statistics perform marginally better than the

absolute value statistics (this is shown more explicitly in Section 6.4.2), the choice in

proposed versions of the statistic ξ makes little difference in the overall performance of

the rotational modification test. Additionally, Figure 18 shows little indication that

an increase in the number of rotations within the test has any effect on the number of

significant test results regardless of the version of the statistic ξ. This suggests that a

lower number of rotations will achieve similar results while providing computational

efficiency. This effect is investigated further in Section 6.3.3 when simulating the

behavior of the test which involves a combination of the rotational and toroidal shift

modifications.

For the cases when the null hypothesis is true (both samples were generated from

the same CSR distribution), we can see that all of the rotational tests demonstrated

roughly the same false positive rate (as seen in the first row of graphs across all of

Figures 18 and 62–66). Overall, 67 out of 1120 tests resulted in false positives, the

ratio of which gives a false positive rate of approximately 0.0598. This is also shown

and discussed further in Section 6.4.2.

The cases when the null hypothesis is false are seen in the bottom four rows

of graphs. Here, none of the rotational tests in Figure 18 exhibit any difficulty in

correctly identifying all of the significant differences for both Corner and Right de-

partures from CSR (as seen in the bottom two rows of graphs). When compared
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Fig. 18: A grid of line graphs showing the results of a simulation comparing multiple rotations of the modified Syrjala
test using complementary weightings of the squared differences in the ECDFs (CWS). The grid column name indicates
the CSR sample size (n1), and the grid row indicates the shape of the second sample. The colors of the lines and symbols
indicate the second sample size (approximate n2). For example, the bottom left graph shows the number of significant test
results (out of ten tests) on CSR realizations of 50 points with Right realizations of approximately 50, 100, 250, and 500
points. Note that the spaces between horizontal tick marks are only approximately represented.
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with Figure 17 it is clear that there are cases in which the Syrjala test and the ro-

tational modified Syrjala test still agree. Furthermore, the rotational tests do well

in correctly identifying significance for the Center distribution (as seen in the second

row of graphs) except for the case when the second sample is small (n2 ≈ 50). In

general, about two out of ten tests were labeled as non-significant in this case.

However, similar to the results shown in Section 6.2.2, the Repel case (as seen in

the third row of graphs) proves to be more difficult for the test to correctly identify

significant differences. This confirms that the rotational modification Syrjala tests

also place less emphases on differences located near the center of the bounding region

similar to the Syrjala test (McAdam et al., 2012). However, the rotational modifi-

cation Syrjala tests overcome some of these issues (see Section 6.2.2). In general, as

both of the sample sizes increase so do the number of significant results. At the point

when both sample sizes are greater than 250, the test can identify almost all of the

significant differences (see the n2 ≈ 250 and n2 ≈ 500 line graphs for the n1 = 250

and n1 = 500 columns in the third row of graphs).

Additionally, more detailed comparisons of the power and false positive rate of

each of these tests as compared to the other tests employed in Section 6.3.2 and 6.3.3

are discussed in Section 6.4.2. In comparison, the far right column (n1 = 500) of

Figure 62 match the results found by McKinney and Symanzik (2019).

6.3.2 Toroidal Shift Modification Simulation Results

Similar to the previous section, Figure 19 shows the results of the simulation

study for the rotational modification when using the CWS statistic. The remaining

five proposed versions of the statistic ξ (see Section 5.1 for more details) are also

explored. However, since Figures 19 and 67–71 show almost the same behavior aside

from some chance variation, the latter figures (Figures 67–71) for the DWS, UWS,
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DWA, UWA, and CWA simulations (respectively) are provided in Appendix B. The

layout of these figures is identical to Figure 18 except that the horizontal axes display

the proportions of points used as origins for the toroidal shifts ranging from 0.1, 0.2,

0.3, 0.5, 0.75, and 0.9.

Similar to Section 6.3.1, while the squared statistics perform marginally better

than the absolute value statistics in Figure 19 (this is shown more explicitly in Sec-

tion 6.4.2), the choice in proposed versions of the statistic ξ makes little difference in

the overall performance of the toroidal shift modification test. Additionally, Figure 19

shows little indication that an increase in the proportion of randomly selected points

(used for origins of the toroidal shifts) within the test has any effect on the number

of significant test results regardless of the version of the statistic ξ. This suggests

that a lower number of toroidal shifts will achieve similar results while providing

computationally efficiency. This effect is investigated further in Section 6.3.3 when

simulating the test behavior of the test which involves a combination of the rotational

and toroidal shift modifications.

For the cases when the null hypothesis is true (both samples were generated from

the same CSR distribution), we can see that all of the toroidal shift tests demonstrated

roughly the same false positive rate (as seen in the first row of graphs). Overall, 30

out of 960 tests resulted in false positives, the ratio of which gives a false positive

rate of approximately 0.0313. This is shown more explicitly and discussed further in

Section 6.4.2.

The cases when the null hypothesis is false are seen in the bottom four rows

of graphs. Here, none of the toroidal shift tests in Figure 19 exhibits any difficulty

in correctly identifying all of the significant differences for the Center or Corner de-

partures from CSR (as seen in the second and fourth rows of graphs, respectively).

Similarly, the toroidal shift tests do well in correctly identifying significance for the
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Fig. 19: A grid of line graphs showing the results of a simulation comparing multiple randomly selected proportions of
points for the origins of the toroidal shifts of the modified Syrjala test using complementary weightings of the squared
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the shape of the second sample. The colors of the lines and symbols indicate the second sample size (approximate n2).
For example, the bottom left graph shows the number of significant test results (out of ten tests) on CSR realizations of
50 points with Right realizations of approximately 50, 100, 250, and 500 points.
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Right distribution (as seen in the bottom row of graphs) except for a few cases most of

which occur when the second sample is small. In comparison, the rotational modified

Syrjala tests correctly computed significance for all of the Right distribution cases

(as seen in the bottom row of graphs of Figure 18). As a reminder, common random

numbers are being employed across all of the simulations (see Section 6.1.3). Thus,

the same ten replications of CSR vs. Right pairs are being compared between the

previous simulation (Figure 18) and this simulation. Therefore, it is not reasonable

to say that these different results for CSR vs. Right are due to chance variation from

a small sample size n2. The slight decrease in performance can be attributed to the

differences in test modifications (i.e., toroidal shifts vs. rotations).

Similar to the rotational test results (in Section 6.3.1), the Repel case (as seen in

the third row of graphs) proves to be more difficult for the test to correctly identify

significant differences. However, there is a noticeable improvement of the toroidal

shift modification over the rotational modification. In general, as both of the sample

sizes increase so do the number of significant results. At the point when both sample

sizes are greater than 100, the test can identify almost all of the significant differences

(see the n2 ≈ 100, n2 ≈ 250 and n2 ≈ 500 line graphs for the n1 = 100, n1 = 250 and

n1 = 500 columns in the third row of graphs).

When compared with Figure 18, Figure 19 shows that while the toroidal shift

test increased the overall number of correct significant test results, the rotational test

does produce more significant test results in a few cases. Specifically, if we compare

the two tests one row at a time, it is clear that the toroidal shift is a better selection

for the Center distribution as it handles the case when both sample sizes are equal to

50 better than the rotational test. Similarly, the toroidal shift test performs better in

almost all cases of the Repel distribution. Both tests perform perfectly for the Corner

distribution in identifying every test result as significant. However, the rotational
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test outperforms the toroidal shift test for several small sample comparisons from

the Right distribution. This is shown more explicitly in Section 6.4.2, in addition

to more detailed comparisons of the power and false positive rate of each of toroidal

shift modification tests as compared to the other tests employed in Section 6.3.3.

6.3.3 Simulation Results for the Modified Syrjala Tests which Combine

both Rotational and Toroidal Shift Modifications

While little difference is observed in the versions of the ξ statistics across both the

rotational (Figures 18 and 62–66) and toroidal shift (Figures 19 and 67–71) modifica-

tions, squared differences in the statistics perform marginally better than the absolute

differences. Hence, the squared differences are only considered in the simulations of

the test involving both rotational and toroidal shift modifications.

While Figures 20–22 show the results of the simulation study for the combination

of both rotational and toroidal shift modifications using only the ξCWS statistic, the

remaining five proposed versions of the statistic ξ (see Section 5.1 for more details) are

also explored. However, since Figures 20 and 72–77 show almost the same behavior

aside from some chance variation, the latter figures (Figures 72–77) for the DWS, and

UWS simulations are provided for each of the proportions of toroidal shifts (0.1, 0.2,

and 0.3) in Appendix B.

Similar to Figures 18, 19, and 62–71, each one of these figures also displays a grid

of line graphs which depict the number of significant test results (p-values < 0.05) out

of ten tests for each number of rotations (horizontal axes), second sample size (n2,

represented by the different colors and shapes in the line graphs), distribution of the

second sample (grid rows), and first sample size (n1, shown in the grid columns) for

a given proportion of randomly selected points used as origins of the toroidal shifts.

However, Figures 20–22 use the proportions of 0.1, 0.2, and 0.3, respectively. The
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Fig. 20: A grid of line graphs showing the results of a simulation comparing multiple rotations of the modified Syrjala
test using 0.1 proportion of points as origins of toroidal shifts, and complementary weightings of the squared differences
in the ECDFs (CWS). The grid column name indicates the CSR sample size (n1), and the grid row indicates the shape of
the second sample. The colors of the lines and symbols indicate the second sample size (approximate n2). For example,
the bottom left graph shows the number of significant test results (out of ten tests) on CSR realizations of 50 points with
Right realizations of approximately 50, 100, 250, and 500 points. Note that the spaces between horizontal tick marks are
only approximately represented.
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Fig. 21: A grid of line graphs showing the results of a simulation comparing multiple rotations of the modified Syrjala
test using 0.2 proportion of points as origins of toroidal shifts, and complementary weightings of the squared differences
in the ECDFs (CWS). The grid column name indicates the CSR sample size (n1), and the grid row indicates the shape of
the second sample. The colors of the lines and symbols indicate the second sample size (approximate n2). For example,
the bottom left graph shows the number of significant test results (out of ten tests) on CSR realizations of 50 points with
Right realizations of approximately 50, 100, 250, and 500 points. Note that the spaces between horizontal tick marks are
only approximately represented.
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Fig. 22: A grid of line graphs showing the results of a simulation comparing multiple rotations of the modified Syrjala
test using 0.3 proportion of points as origins of toroidal shifts, and complementary weightings of the squared differences
in the ECDFs (CWS). The grid column name indicates the CSR sample size (n1), and the grid row indicates the shape of
the second sample. The colors of the lines and symbols indicate the second sample size (approximate n2). For example,
the bottom left graph shows the number of significant test results (out of ten tests) on CSR realizations of 50 points with
Right realizations of approximately 50, 100, 250, and 500 points. Note that the spaces between horizontal tick marks are
only approximately represented.
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remaining proportions explored in the test involving only the toroidal shifts (0.5, 0.75,

and 0.9) are not included here due to the computational load imposed by the large

proportions. However, stable results are shown across Figures 20–22 similar to those

seen in Section 6.3.2.

Overall, Figures 20–22 show almost the same behavior aside from some chance

variation, and the overall number of significant tests are almost identical to the

toroidal shift test as seen in Section 6.3.2. This suggests that a smaller number of ro-

tations as well as a smaller proportion of randomly selected points used as the origins

of the toroidal shifts is sufficient for representative test results while also providing

relief to the computational load.

For the cases when the null hypothesis is true (both samples were generated

from the same CSR distribution), we can see that all of the combined rotational and

toroidal shift tests demonstrated roughly the same false positive rate (as seen in the

first row of graphs of each figure). However, the false positive rate expressed by this

test is closer to the significance level of 0.05 than either the rotational or toroidal

shift tests. Specifically, 50, 50, and 51 out of 1120 tests resulted in false positives, the

ratio of which gives a false positive rate of approximately 0.045, 0.045, and 0.046 for

each of the simulation results in Figures 20–22, respectively. This is compared more

explicitly and discussed further in Section 6.4.2.

The cases when the null hypothesis is false are seen in the bottom four row of

graphs. Here, none of the combined rotational and toroidal shift tests in Figures 20–

22 exhibit any difficulty in correctly identifying all of the significant differences for

the Center or Corner departures from CSR (as seen in the second and fourth rows

of graphs, respectively). This behavior is identical to the toroidal shift test (see

Section 6.3.2). Similarly, the combined rotational and toroidal shift tests do well in

correctly identifying significance for the Right distribution (as seen in the bottom row
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of graphs) except for a few cases when the second sample is small. This behavior is

also similar to the toroidal shift test (see Section 6.3.2), except that the combined

modification test is moderately better. However, the combined modification is still

not as good as the test which employs only rotations for a few cases from the Right

distribution. This may be due to the fact that the rotational test still emphasizes

differences closer to the edge of the sample distributions, which proves to be a strength

when faced with distributions similar to the Right case.

Similar to the toroidal shift test results (in Section 6.3.2), the Repel case (as seen

in the third row of graphs) proves to be more difficult for the combined modification

test to correctly identify significant differences. However, similar to the toroidal shift

test, there is a noticeable improvement of the combined modification test over the

rotational modification. In general, as both of the sample sizes increase so do the

number of significant results. At the point when both sample sizes are greater than

100, the test can identify almost all of the significant differences (see the n2 ≈ 100,

n2 ≈ 250 and n2 ≈ 500 line graphs for the n1 = 100, n1 = 250 and n1 = 500 columns

in the third row of graphs).

6.3.4 Simulation Results for the Combined Rotational and Toroidal Shift

Modified Syrjala Tests which Employ Toroidal Shift Thresholds

While computing a number of toroidal shifts using a proportion of the pooled

sample size has been studied in Sections 6.3.2 and 6.3.3, in this section additional

functionality for computational efficiency has been integrated into the modified Syr-

jala test which employs both rotational and toroidal shifts. This functionality allows a

limiting threshold to be set to the number of randomly selected points used as origins

for toroidal shifts. If the pooled sample size is below the threshold, a toroidal shift

will be computed for every point in both samples (within every rotation). However,
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if the pooled sample size is over the threshold, only a random number of points equal

to the threshold are used as origins for toroidal shifts. (Note that this random sample

of points is redrawn for every rotation.) As a reminder, the same generated data used

for previous modified Syrjala test simulations are being used here. Furthermore, the

test results are reproducible using the random number seeds listed in Table 7.

Figure 23 shows the results of a simulation where a toroidal shift threshold was set

at 25 points. While the combined sample size is always at least 100, and consequently

always greater than a toroidal shift threshold of 25, later simulations (in Sections 6.5)

include cases where the combined sample size is less than the toroidal shift threshold.

Furthermore, while Figure 23 only shows the results for the test which employs

the CWS statistic, tests which employ the DWS and UWS statistics were also con-

sidered. However, the results are similar among these tests except for some chance

variation. Hence, the test results for the latter two are included as Figures 78 and

79 in Appendix B. As a reminder, the tests with statistics which computed abso-

lute differences in the ECDFs (i.e., the tests which used the DWA, UWA, and CWA

statistics) were not considered here since they showed little difference to the squared

statistics (DWS, UWS, and CWS), and the squared statistics achieved a marginally

higher power. This is more clearly seen in Section 6.4.2.

Furthermore, the test results of Figure 23 as compared to Figures 20–22 are also

similar except for some chance variation. Similar to Figures 20–22, Figure 23 also

displays a grid of line graphs which depict the number of significant test results (p-

values < 0.05) out of ten tests for each number of rotations (horizontal axes), second

sample size (n2, represented by the different colors and shapes in the line graphs),

distribution of the second sample (grid rows), and first sample size (n1, shown in the

grid columns) for a limited number of 25 randomly selected points used as origins of

the toroidal shifts.
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Fig. 23: A grid of line graphs showing the results of a simulation comparing toroidal shift thresholds of 25 points of
the modified Syrjala test across a number of rotations using complementary weightings of the squared differences in the
ECDFs (CWS). The grid column name indicates the CSR sample size (n1), and the grid row indicates the shape of the
second sample. The colors of the lines and symbols indicate the second sample size (approximate n2). For example, the
bottom left graph shows the number of significant test results (out of ten tests) on CSR realizations of 50 points with
Right realizations of approximately 50, 100, 250, and 500 points.
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For the cases when the null hypothesis is true (both samples were generated from

the same CSR distribution), we can see that all of the tests demonstrated roughly the

same false positive rate (as seen in the first row of graphs). Overall, 50 out of 1120 tests

resulted in false positives, the ratio of which gives a false positive rate of approximately

0.045. This is shown more explicitly and discussed further in Section 6.4.2.

The cases when the null hypothesis is false are seen in the bottom four rows of

graphs. Here, none of the tests in Figure 23 exhibits any difficulty in correctly identi-

fying all of the significant differences for the Center or Corner departures from CSR

(as seen in the second and fourth rows of graphs, respectively). Similarly, the toroidal

shift tests do well in correctly identifying significance for the Right distribution (as

seen in the bottom row of graphs) except for a few cases most of which occur when

the second sample is small.

Similar to the combined rotational and toroidal shift test results (in Section 6.3.3),

the Repel case (as seen in the third row of graphs) proves to be more difficult for the

combined modification test with a toroidal shift threshold to correctly identify sig-

nificant differences. However, similar to the combined rotational and toroidal shift

tests, there is a noticeable improvement of the combined modification test over the

rotational modification. In general, as both of the sample sizes increase so do the

number of significant results. At the point when both sample sizes are greater than

100, the test can identify almost all of the significant differences (see the n2 ≈ 100,

n2 ≈ 250 and n2 ≈ 500 line graphs for the n1 = 100, n1 = 250 and n1 = 500 columns

in the third row of graphs).

Hence, limiting the number of toroidal shifts to 25 per rotation does not change

the results of the tests under these scenarios considerably. These results provide

motivation to a computationally conscientious default threshold value for the tests in

the R package (see Chapter 8). A more detailed comparison of the power and false
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positive rates of these tests is made in Section 6.4.2.

6.4 Comparative Simulation Study

In this section, a simulation study is conducted which makes a comparison of the

performance (both power and false positive rate) of five methods: (1) the Energy test

(Rizzo and Székely, 2016), (2) the kernel maximum mean discrepancy test (Gretton

et al., 2012), (3) the extension of the Kolmogorov (1933) test within the Friedman and

Rafsky (1979) test (see Sections 2.2.1–2.2.4 for more details), and the combined rota-

tional and toroidal shift modified Syrjala tests which use (4) proportions of points for

toroidal shifts and (5) thresholds for the number of toroidal shifts. The simulations

discussed in Section 6.3 involved exploring the rotational and toroidal shift modifi-

cations across multiple levels of number of rotations, proportion of randomly chosen

points as origins of the toroidal shifts, and a threshold of 25 toroidal shifts, respec-

tively. However, in this section the two versions of the test that are considered use

8 rotations and either 0.1 proportions of toroidal shifts or a threshold of 25 toroidal

shifts. Additionally, these tests employ only the CWS test statistic. While arguments

could be made for the other test statistics and modification parameters, it has been

shown that the results will not change drastically from one choice to another (see

Section 6.3).

6.4.1 Simulation Results

Figure 24 shows a grid of line graphs which depict the number of significant

tests (p-values < 0.05) out of ten tests for each of the methods under consideration.

The five methods, abbreviated on the horizontal axes, are (1) the Energy test, (2)

the kernel maximum mean discrepancy test (Kmmd), (3) Friedman and Rafsky’s

extension of the Kolmogorov test (FR-KS), (4) the combined rotational and toroidal
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shift modified Syrjala test using the CWS statistic, 8 rotations, and 0.1 proportion of

points as origins of the toroidal shifts (Rot8Toro0.1), and (5) the combined rotational

and toroidal shift modified Syrjala test using the CWS statistic, 8 rotations, and a

toroidal shift threshold of 25 points (Rot8Toro25). Figure 24 also shows the second

sample size (n2, represented by the different colors and shapes in the line graphs),

the distribution shape of the second sample (grid rows), and the first sample size (n1,

shown in the grid columns). Note that the Rot8Toro0.1 and Rot8Toro25 test results

are identical to those previously presented in Figures 20 and 23, respectively, for the

cases in which the number of rotations equals eight.

When the null hypothesis is true, and the two samples are being generated by

the same CSR process (as seen in the top row of graphs in Figure 17), the methods

should reject about one in twenty times since the significance level is 0.05. None of

the methods appears to be obviously conservative (like the Syrjala test in Figure 17)

or anti-conservative. However, a more detailed analysis of the false positive rate of

each test is discussed in Section 6.4.2.

When the null hypothesis is false, and the second sample exhibits some departure

from CSR, it is interesting to note that all of the tests were able to correctly identify

all significant cases for the Corner distribution (see the second row from the bottom

in Figure 24). This case shows that there is an amount of agreement between the

bivariate two-sample tests.

Some additional amount of agreement between the tests is also seen in the Right

and Center distributions. However, the FR-KS test failed to identify all of the cases,

particularly when the sample sizes were smaller. As both sample sizes increased, the

FR-KS test was better able to identify significant differences in the Right distribution

(bottom row) than in the Center distribution (second row from the top).

In contrast, the Energy, Kmmd, Rot8Toro0.1 and Rot8Toro25 tests were able
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Fig. 24: A grid of line graphs showing the results of a simulation comparing alternative multivariate two-sample tests to
the modified Syrjala test using the CWS statistic, eight rotations, and either 0.1 proportion of points as origins of toroidal
shifts (Rot8Toro0.1), or a toroidal shift threshold of 25 points (Rot8Toro25). The grid column name indicates the CSR
sample size (n1), and the grid row indicates the shape of the second sample. The colors of the lines and symbols indicate
the second sample size (approximate n2). For example, the bottom left graph shows the number of significant test results
(out of ten tests) on CSR realizations of 50 points with Right realizations of 50, 100, 250, and 500 points. Note that the
Rot8Toro0.1 and Rot8Toro25 test results are identical to those previously presented in Figures 20 and 23, respectively.
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to identify all of the differences in the Right and Center distributions except for a

few cases. The Energy test misclassified two cases for when n1 = 50 and n2 ≈ 50

in the Center distribution. The Kmmd test misclassified one case for when n1 = 50

and n2 ≈ 500 in the Right distribution. The Rot8Toro0.1 modified Syrjala test

misclassified two cases for when n1 = 50 and n2 ≈ 50, and one case for when n1 = 100

and n2 ≈ 50 in the Right distribution. In addition to the cases that the Rot8Mod0.1

test misclassified in the Right distribution, the Rot8Toro25 modified Syrjala test

misclassified two additional cases when n1 = 50 and n2 ≈ 500, and when n1 = 50 and

n2 ≈ 250. Otherwise, the two versions of the modified Syrjala test perform similarly.

The Repel departure from CSR provides an interesting case where all of the

tests exhibited difficulty in correctly identifying all of the significant cases. While

not always the case, in general, all of the tests performed better as either sample

size increased. For the case when n1 = 50 (first column in the third row), the

Rot8Toro0.1 and Rot8Toro25 modified Syrjala tests are able to correctly identify

more significant differences than all three of the other tests except for when n2 ≈ 100

where Rot8Toro0.1 performs better than the FR-KS test by only one more significant

result and Rot8Toro25 performs the same as the FR-KS test. In all other cases, the

Rot8Toro0.1 and Rot8Toro25 tests outperform the others by at least three significant

tests or more.

A similar superiority is exhibited by Rot8Toro0.1 and Rot8Toro25 over the other

three tests when n1 = 100. However, as soon as n1 = 250 or n1 = 500 (third and

fourth columns from the left of the third row) and n2 ≈ 250 or n2 ≈ 500, the Energy

and Kmmd tests begin to perform comparatively to the Rot8Toro0.1 and Rot8Toro25

tests. While the FR-KS test is beginning to improve when n1 = 250 and n1 = 500, it

under-performs all other tests, achieving significance in at most only five out of the

ten tests in a few cases. Most notably, the Rot8Toro0.1 and Rot8Toro25 tests again
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outperform all other tests when n1 = 250 or n1 = 500 and n2 ≈ 50 or n2 ≈ 100 by at

least three significant test results or more.

6.4.2 Comparison of Power and False Positive Rates

This section summarizes the results of the simulations discussed in Sections 6.2–

6.4. The power (see Figure 25 and Table 8) and false positive rate (see Figure 26

and Table 9) are computed and graphed for the rotational, toroidal shift, and com-

bined modified Syrjala tests, as well as the Syrjala (across the different binning types

and granularities), Energy, Kmmd, and FR-KS tests. For the combined rotational

and toroidal shift modified Syrjala tests, both tests using proportions of points and

thresholds are considered when limiting the number of toroidal shifts. Within each

of the modified Syrjala tests shown in Figures 25 and 26, six different statistics were

computed using double weighted (DW), uniformly weighted (UW), or complementary

weighted (CW) differences in the sample ECDFs, which were either squared (S) or

absolute valued (A). See Chapter 5 for more details. However, while the power and

false positive rate of the rotational and toroidal shift modification tests are shown for

all six of the proposed statistics (i.e., all combinations of weights with both types of

differences [DWS, UWS, CWS, DWA, UWA, and CWA]), the combined modification

tests only employ the squared differences in the test statistics (i.e., DWS, UWS, and

CWS). As a reminder, the tests with statistics which computed absolute differences in

the ECDFs (i.e., the tests which used the DWA, UWA, and CWA statistics) were not

considered since they showed little difference to the squared statistics (DWS, UWS,

and CWS), and the squared statistics each achieved a marginally higher power (as

shown in Figure 25).

Specifically, the false positive rate is computed by dividing the number of sig-

nificant test results by the total number of tests computed when both samples come
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Fig. 25: A comparison of the power achieved by the tests discussed in Sections 6.3 and
6.4 via a Cleveland dot plot. The dot colors and shapes separate the results into three
categories: (1) modifications to the Syrjala test (blue circles), (2) the Syrjala test (red
triangles), and (3) alternative tests (purple squares). The tabs on the right further
separate the modifications to the Syrjala test into rotations (Rot Mod), toroidal shifts
(Toro Mod), and both rotations and toroidal shifts (RotToro Mod). The Syrjala test
is also separated by regular (Syr Reg) and random binning (Syr Ran) tabs. The
remaining alternative tests (Alt Tests) are also grouped together. DWS, UWS, CWS,
DWA, UWA, and CWA refer to the six different proposed statistics (Section 5.1) for
measuring the differences in the ECDFs.
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Table 8: A table listing the test description, number of significant tests, total number
of tests, and power (first four columns from the left) for all of the tests considered
in Figure 25. DWS, UWS, CWS, DWA, UWA, and CWA refer to the six different
proposed statistics (Section 5.1) for measuring the differences in the ECDFs.

Test Sig. Total Syrjala Test
Description Tests Tests Power Modification

DWS Rot 3891 4480 ≈ 0.869 Rot Mod
UWS Rot 3894 4480 ≈ 0.869 Rot Mod
CWS Rot 3896 4480 ≈ 0.870 Rot Mod
DWA Rot 3877 4480 ≈ 0.865 Rot Mod
UWA Rot 3874 4480 ≈ 0.865 Rot Mod
CWA Rot 3878 4480 ≈ 0.866 Rot Mod

DWS Toro 3658 3840 ≈ 0.953 Toro Mod
UWS Toro 3663 3840 ≈ 0.954 Toro Mod
CWS Toro 3662 3840 ≈ 0.954 Toro Mod
DWA Toro 3653 3840 ≈ 0.951 Toro Mod
UWA Toro 3654 3840 ≈ 0.952 Toro Mod
CWA Toro 3655 3840 ≈ 0.952 Toro Mod

DWS RotToro0.1 4261 4480 ≈ 0.951 RotToro Mod
UWS RotToro0.1 4262 4480 ≈ 0.951 RotToro Mod
CWS RotToro0.1 4267 4480 ≈ 0.952 RotToro Mod
DWS RotToro0.2 4279 4480 ≈ 0.965 RotToro Mod
UWS RotToro0.2 4280 4480 ≈ 0.965 RotToro Mod
CWS RotToro0.2 4283 4480 ≈ 0.966 RotToro Mod
DWS RotToro0.3 4271 4480 ≈ 0.953 RotToro Mod
UWS RotToro0.3 4275 4480 ≈ 0.954 RotToro Mod
CWS RotToro0.3 4276 4480 ≈ 0.954 RotToro Mod

DWS RotToro25Thrshld 4269 4480 ≈ 0.953 RotToro Mod
UWS RotToro25Thrshld 4270 4480 ≈ 0.953 RotToro Mod
CWS RotToro25Thrshld 4273 4480 ≈ 0.954 RotToro Mod

Syr Reg 5×5 Bins 477 640 ≈ 0.745 NA
Syr Reg 10×10 Bins 553 640 ≈ 0.864 NA
Syr Reg 20×20 Bins 560 640 ≈ 0.875 NA

Syr Ran 25 Bins 433 640 ≈ 0.677 NA
Syr Ran 100 Bins 545 640 ≈ 0.852 NA
Syr Ran 400 Bins 562 640 ≈ 0.878 NA

Energy 542 640 ≈ 0.847 NA
Kmmd 550 640 ≈ 0.859 NA
FR-KS 465 640 ≈ 0.727 NA
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Fig. 26: A comparison of the false positive rates achieved by the tests discussed in
Sections 6.3 and 6.4 via a Cleveland dot plot. The dot colors and shapes separate the
results into three categories: (1) modifications to the Syrjala test (blue circles), (2) the
Syrjala test (red triangles), and (3) alternative tests (purple squares). The tabs on the
right further separate the modifications to the Syrjala test into rotations (Rot Mod),
toroidal shifts (Toro Mod), and both rotations and toroidal shifts (RotToro Mod).
The Syrjala test is also separated by regular (Syr Reg) and random binning (Syr Ran)
tabs. The remaining alternative tests (Alt Tests) are also grouped together. DWS,
UWS, CWS, DWA, UWA, and CWA refer to the six different proposed statistics
(Section 5.1) for measuring the differences in the ECDFs. The vertical red line at
0.05 indicates the significance level of the tests.
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Table 9: A table listing the test description, number of significant tests, total number
of tests, and false positive rate (first four columns from the left) for all of the tests
considered in Figure 26. DWS, UWS, CWS, DWA, UWA, and CWA refer to the six
different proposed statistics (Section 5.1) for measuring the differences in the ECDFs.

Test Sig. Total False Positive Syrjala Test
Description Tests Tests Rate Modification

DWS Rot 69 1120 ≈ 0.062 Rot Mod
UWS Rot 71 1120 ≈ 0.063 Rot Mod
CWS Rot 67 1120 ≈ 0.060 Rot Mod
AbsV Rot 71 1120 ≈ 0.063 Rot Mod
AbsV Rot 69 1120 ≈ 0.062 Rot Mod
AbsV Rot 70 1120 ≈ 0.062 Rot Mod

DWS Toro 30 960 ≈ 0.031 Toro Mod
UWS Toro 28 960 ≈ 0.029 Toro Mod
CWS Toro 30 960 ≈ 0.031 Toro Mod
AbsV Toro 30 960 ≈ 0.031 Toro Mod
AbsV Toro 29 960 ≈ 0.030 Toro Mod
AbsV Toro 31 960 ≈ 0.032 Toro Mod

DWS RotToro0.1 52 1120 ≈ 0.046 RotToro Mod
UWS RotToro0.1 52 1120 ≈ 0.046 RotToro Mod
CWS RotToro0.1 50 1120 ≈ 0.045 RotToro Mod
DWS RotToro0.2 49 1120 ≈ 0.044 RotToro Mod
UWS RotToro0.2 49 1120 ≈ 0.044 RotToro Mod
CWS RotToro0.2 50 1120 ≈ 0.045 RotToro Mod
DWS RotToro0.3 51 1120 ≈ 0.046 RotToro Mod
UWS RotToro0.3 52 1120 ≈ 0.046 RotToro Mod
CWS RotToro0.3 51 1120 ≈ 0.046 RotToro Mod

DWS RotToro25Thrshld 48 1120 ≈ 0.043 RotToro Mod
UWS RotToro25Thrshld 48 1120 ≈ 0.043 RotToro Mod
CWS RotToro25Thrshld 50 1120 ≈ 0.045 RotToro Mod

Syr Reg 5×5 Bins 12 160 = 0.075 NA
Syr Reg 10×10 Bins 13 160 ≈ 0.081 NA
Syr Reg 20×20 Bins 10 160 ≈ 0.062 NA

Syr Ran 25 Bins 16 160 ≈ 0.100 NA
Syr Ran 100 Bins 9 160 ≈ 0.056 NA
Syr Ran 400 Bins 9 160 ≈ 0.056 NA

Energy 10 160 ≈ 0.062 NA
Kmmd 12 160 = 0.075 NA
FR-KS 9 160 ≈ 0.056 NA
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from the same CSR distribution (first row of graphs in Figures 17–23 and 62–79).

For example, the Syrjala test (see Figure 17) which employed 5 × 5 regular binning

resulted in 12 out of 160 tests being false positives, i.e., a false positive rate of 0.075.

For the modified Syrjala tests, this computation was applied to the aggregation of

tests across all rotations or toroidal shifts values. For example, the rotational modi-

fied Syrjala test which used the CWS statistic resulted in 67 out of 1120 tests being

false positives, i.e., a false positive rate of 0.05982.

For false positive rates in Figure 26, test results should be as close as possible to

0.05 (i.e., 5%, indicated by the horizontal line) when testing at the 5% significance

level. Test results which fall below 0.05 are indications of a conservative nature in

the test (i.e., a test which is less likely to reject the null when it is actually true). In

Figure 25, the higher the power of a test the more likely the test is to reject the null

when it is indeed false. Theoretically, the maximum power a test can achieve is one.

In Figure 25, the power was computed by dividing the number of significant tests

by the total number of tests in which the null hypothesis was false. For the Energy,

Kmmd, and FR-KS tests, the total number of tests was 640 (ten replications times

four n1 sample sizes times four n2 sample sizes times four departures from CSR). Since

the rotational, toroidal shift, combined modifications tests were simulated across a

variety of number of rotations and proportions of randomly selected points used for

the origins of the toroidal shifts, or both, respectively, the total number of tests

for these cases were as follows: 4,480 (ten replications times seven rotational levels

times four n1 sample sizes times four n2 sample sizes times four departures from

CSR) rotational tests, 3,840 (ten replications times six proportion levels times four

n1 sample sizes times four n2 sample sizes times four departures from CSR) toroidal

tests, and 4,480 combined modification tests. The number of significant tests for all

of the tests (given that the null hypothesis is false) are reported in Table 8.
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The superiority of the toroidal shift and combined modifications over the ro-

tational modification and other alternative methods (Energy, Kmmd, FR-KS, and

binned Syrjala) is clearly seen in Figure 25. Additionally, while Figures 25 and 26

show a considerable difference between the toroidal shift and rotational modifications,

little difference is seen across the different test statistics (DWS, UWS, CWS, DWA,

UWA, and CWA). Specifically, the power of the tests which employ toroidal shift

modifications is approximately 0.08 higher than the rotational modification tests on

average. However, the power of tests which involve squared differences in the ECDF

values is only approximately 0.003 higher than tests which use absolute differences

in ECDF values on average. Additionally, the relative stability in results suggest less

computationally intensive tests may be employed without a sacrifice in performance.

Additionally, while the toroidal shift modification clearly outperforms the rota-

tional modification, the combination of both modifications did not achieve a consid-

erably higher power than the toroidal shift modification alone. Specifically, the mean

power across all of the rotational tests is 0.867, while the mean power for the toroidal

shift and combined modification tests are 0.952 and 0.954, respectively. Hence, one

could argue that the toroidal shift modification is sufficient since it will provide almost

identical power as compared to the much more computationally intensive combina-

tion of modifications. However, Figure 26 shows that the combined test provides a

more appropriately conservative (i.e., a false positive rate closer yet still below the

significance level of 0.5) test as compared to the toroidal shift modification alone.

Specifically, the average false positive rate of the toroidal shift modification is 0.03,

which is more conservative than the average 0.045 false positive rate of the combined

modification. Due to the trade-off between the false positive rate and power of a

test, the test with false positive rate closer to the significance level is expected to

be more powerful in the face of all departures from the null hypothesis. Hence, the
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combined rotational and toroidal shift test is recommended as a more powerful, yet

still conservative, choice in the face of all departures from the null.

Keep in mind that the number of total tests with respect to the false positive

rate of each method in Figure 26 differs similar to Figure 25. For the Energy, Kmmd,

and FR-KS tests, the total number of tests was 160 (ten replications times four n1

sample sizes times four n2 sample sizes). Similarly, the rotational, toroidal shift,

and combined modifications tests had a total number of tests as follows: 1,120 (ten

replications times seven rotational levels times four n1 sample sizes times four n2

sample sizes) rotational tests, 960 (ten replications times six proportion levels times

four n1 sample sizes times four n2 sample sizes) toroidal tests, and 1,120 combined

modification tests. The number of significant tests for all of the tests (given that the

null hypothesis is true) are reported in Table 9.

Figure 26 shows that while the Energy, Kmmd, FR-KS and rotational modifica-

tion tests all demonstrated false positive rate levels above the significance level, the

toroidal and combined modification tests achieved conservative false positive rate lev-

els (below the significance level). Furthermore, while the combined modification tests

achieved about the same power as the toroidal shift modification tests (as seen in Fig-

ure 25), the combined modification test proves to be closer to the significance level

than the toroidal modification test while still remaining conservative. The Kmmd

test is the most anti-conservative test, while the FR-KS is the least anti-conservative.

Hence, this figure, similar to Figure 25, demonstrates the superiority of the combined

modification test over other methods as the most powerful yet conservative choice

when applied to data of a similar nature.

Furthermore, there is no linear increase in performance as the proportion of

points used for toroidal shifts increases for the combined rotational and toroidal shift

modified Syrjala tests. Specifically, there is no improvement to the false positive
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rate when increasing the proportion of points from 0.1 to 0.2. Additionally, fixing

the number of toroidal shifts to a threshold of 25 randomly selected points (Rot-

Toro25Thrshld) performs similarly for all of the squared test statistics. Hence, these

results provide motivation to a default threshold value of 25 for the tests in the R

package (see Chapter 8).

6.5 Eye-Tracking Inspired Simulation Study

Another series of simulations were conducted to demonstrate the performance

of the modified Syrjala tests on data which more closely represent cases taken from

eye-tracking research. Due to the relatively stable results demonstrated by the mod-

ified Syrjala test (using both rotational and toroidal shifted modifications) in Sec-

tions 6.2–6.4, only the test which employs the CWS statistic (see Section 5.1) with

eight rotations and uses 0.1 proportion of points as toroidal shift origins was used

across these simulations. This modified Syrjala test has been shown to be one of

the most powerful yet conservative choices among the tests which were previously

compared in Section 6.4.2. The use of this version of the modified Syrjala tests is

also justified by the stability of the results across a wider range of sample sizes within

Sections 6.5.3 and 6.5.9. In Sections 6.5.3 and 6.5.9 the modified Syrjala test is again

explored across rotations (namely, 4, 5, 6, 8, 10, 36, and 45), proportions of points

for toroidal shifts (namely, 0.1, 0.2, 0.3, 0.5, 0.75, and 0.9), and thresholds for the

number of toroidal shifts (namely, 15, 25, and 40).

6.5.1 Generated Data Structure

A variety of data structures were used across these simulations to demonstrate

the performance of the modified Syrjala tests on scenarios which are patterned more

closely to those seen in eye-tracking research. Specifically, gaze point fixations are
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modeled as bivariate normal distributions with sample sizes of 15, 25, 40, 70, 100,

250, and 500 points. These sample sizes were chosen to provide realizations similar

to those seen in the USU Posture Study data (analyzed in Chapter 7). Six of the

following detailed simulations generate a single bivariate normal distribution as a

null hypothesis which represents a subject concentrating their visual attention on

one object. From here, departures from this behavior are compared as alternative

hypotheses which exhibit differences in location, shape, allocation of visual attention

between one and multiple objects, and the introduction of few or many additional

noise gaze points. These are detailed in Sections 6.5.3–6.5.8.

Two additional simulations (in Sections 6.5.9 and 6.5.10) use mixture distribu-

tions to model a specific case taken from the USU Posture Study (Symanzik et al.,

2017, 2018; Studenka et al., 2020; Coltrin et al., 2020; McKinney and Symanzik,

2019, 2021). Here, the collections of gaze points from treatment and control groups

are modeled as clusters of bivariate normal distributions. Simulated data similar to

posture ID 17 (see Appendix C.1) is compared with departures in fixation location,

shape, and the introduction of few or many additional noise gaze points for the initial

simulation, and differences in allocation of visual attention across the posture image

for the latter simulation. The generated data for each simulation was produced on

the [0, 1]× [0, 1] square. Additionally, common random numbers and random number

seeds were employed similarly to previous simulations (see Section 6.1).

6.5.2 General Structure of Results

Many of the results in the following Sections 6.5.3–6.5.10 are of a similar format,

except for the simulation where an equal amount of noise is generated for both samples

in Section 6.5.8, and where the modified Syrjala tests are explored across a variety

of parameters in Sections 6.5.3 and 6.5.9. These exceptions are explained in detail
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in their respective sections. Otherwise, the figures which display the results have a

similar layout. Each figure displays a grid of line graphs showing the performance of

the modified Syrjala test (using 0.1 proportion of points as origins of toroidal shifts, 8

rotations, and the CWS statistic). The vertical axes display the number of significant

tests out of ten tests (each conducted at the 0.05 significance level), the grid column

name indicates the first sample size (n1), and horizontal axes indicate the second

sample size (n2). The grid row indicates the shape of the second sample. However,

the shape of the first sample follows the distribution exhibited in the first row in all

cases (except for the figure in Section 6.5.8 where both samples shapes are indicated

in the grid row).

Hence, the first row demonstrates the performance of the test when the null hy-

pothesis is true, and the two samples originate from the same distribution. Whereas,

the remaining four rows display the performance of the test for departures from the

first sample’s distribution (i.e., when the null hypothesis is false). In the first row,

each significant test is a false positive since both samples are being drawn from the

same distribution. Thus, it is expected to see roughly 5% of the 490 tests (ten tests

times seven sample sizes for n1 times seven sample sizes for n2) as significant by

chance variation. This is about 24.5 tests on average.

As an example, the bottom left subgraph shows the number of significant tests

(out of ten tests) between the first samples with 15 points and second samples with

15, 25, 40, 70, 100, 250, and 500 points within the respective simulation. Additionally,

each figure includes a column of scatterplots in the far right side of the figure which

depict realizations of the second sample when the sample size is 500.

6.5.3 Simulating Differences in Fixation Location

The null hypothesis for this initial simulation assumes a subject is concentrating
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their visual attention on a single object near the bottom left corner of the [0, 1]× [0, 1]

square. This is modeled as a bivariate normal distribution with mean coordinates of

(0.25, 0.25) and variance-covariance matrix of
[
0.005 0
0 0.005

]
.

Departures from the null hypothesis are modeled as identical distributions that

are shifted up and to the right by increments of 0.025 in the vertical and horizontal

directions (i.e., shifted diagonally toward the upper right corner by increments of√
(0.025)2 + (0.025)2 =

√
2

40
≈ 0.04). Hence, four departures from the null hypothesis

are modeled as bivariate normal distributions with variance-covariance matrices of[
0.005 0
0 0.005

]
and bivariate mean coordinates of (0.275, 0.275), (0.3, 0.3), (0.325, 0.325),

(0.35, 0.35), respectively.

Results Across All Modified Syrjala Tests

In Sections 6.3–6.4.2 the modified Syrjala tests were shown to exhibit stable

results across an array of rotations, toroidal shifts, and both rotations and toroidal

shifts in simulations which involved departures from CSR data. It was also shown

that little difference in the test results are observed across six different statistics

within the modified Syrjala tests. As the tests are being applied to eye-tracking

inspired data throughout the subsections of Section 6.5, the six statistics together

with the modifications (rotations, toroidal shifts, or both combined) are employed

again to establish stable results across smaller sample sizes using eye-tracking inspired

data, and to reaffirm the sensible default parameter values (initially proposed from

the simulations with larger samples in Section 6.4.2) for the distdiffR R package

functions (described in more detail in Chapter 8). The default parameters are the

CWS statistic, eight rotations, and a threshold of 25 toroidal shifts or 0.1 for a

proportion of points to be used as toroidal shifts. Similar results are also provided

in Section 6.5.9 where the simulated data is patterned more closely to eye-tracking
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data. These results also support the recommended default parameter values for the

combined rotational and toroidal shift tests.

Consequently, the format of Figures 27–34 differs slightly from the others within

Sections 6.3–6.4.2. While these figures still display grids of line graphs making com-

parisons between simulated differences in fixation location (detailed in Section 6.5.3)

for the same sample sizes (15, 25, 40, 70, 100, 250, and 500), the horizontal axes

differs from that described in Section 6.5.2. The horizontal axes show the number of

rotations or proportions of toroidal shifts (similar to the simulation Figures 18–22 in

Section 6.3). The abbreviation “cenbl” in the far right of the top row indicates that a

bivariate normal distribution was used to generate the data in the bottom-left corner

of the unit square. The number following cenbl in the far right of the remaining

rows indicates the coordinates of the alternative distribution’s bivariate mean, e.g.,

cenbl 0.325 indicates that the second sample was generated using a bivariate normal

distribution centered at (0.325, 0.325).

While, Figure 27 shows the test results of the rotational modification for only the

CWS statistic, the other five statistics were also explored (DWS, UWS, DWA, UWA,

and CWA). However, similar to what has been seen in Section 6.3.1, the results of

the tests displayed little difference regardless of the test statistic. Hence, the figures

displaying those test results (Figures 80–84) are provided in Appendix B. Similarly,

this is also true of the toroidal shift (Figure 28) in this section. Consequently, the per-

formance of the other five statistics when used within the toroidal shift modification

are also provided in Appendix B (as Figures 85–89). Due to the stability in results

exhibited across the six statistics for the rotational and toroidal shift tests, only the

CWS statistic was used when applying the combined rotational and toroidal shift

modified Syrjala tests. These tests are explored using 0.1, 0.2, and 0.3 proportions of

points for toroidal shift origins in Figures 29–31, respectively, and 15, 25, and 40 as
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Fig. 27: A grid of line graphs showing the results of a simulation comparing multiple rotations of the modified Syrjala
test (using the CWS statistic) on simulated eye-tracking data where subjects concentrate on a single object at differing
locations. The grid column name indicates the first sample size (n1), and the grid row indicates the shape of the second
sample. The shape of the first sample follows the same distribution exhibited in the first row. The horizontal axis indicates
the second sample size (n2). For example, the bottom left graph shows the number of significant test results (out of ten
tests) between the first samples with 15 points and second samples with 15, 25, 40, 70, 100, 250, and 500 points. Note
that the spaces between horizontal tick marks are only approximately represented.
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Fig. 28: A grid of line graphs showing the results of a simulation comparing multiple proportions of toroidal shifts of
the modified Syrjala test (using the CWS statistic) on simulated eye-tracking data where subjects concentrate on a single
object at differing locations. The grid column name indicates the first sample size (n1), and the grid row indicates the
shape of the second sample. The shape of the first sample follows the same distribution exhibited in the first row. The
horizontal axis indicates the second sample size (n2). For example, the bottom left graph shows the number of significant
test results (out of ten tests) between the first samples with 15 points and second samples with 15, 25, 40, 70, 100, 250,
and 500 points.
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Fig. 29: A grid of line graphs showing the performance across a variety of rotations of the modified Syrjala test (using 0.1
proportion of points as origins of toroidal shifts, and the CWS statistic) on simulated eye-tracking data where subjects
concentrate on a single object at differing locations. The grid column name indicates the first sample size (n1), and the
grid row indicates the shape of the second sample. The shape of the first sample follows the same distribution exhibited
in the first row. The horizontal axis indicates the second sample size (n2). For example, the bottom left graph shows the
number of significant test results (out of ten tests) between the first samples with 15 points and second samples with 15, 25,
40, 70, 100, 250, and 500 points. Note that the spaces between horizontal tick marks are only approximately represented.
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Fig. 30: A grid of line graphs showing the performance across a variety of rotations of the modified Syrjala test (using 0.2
proportion of points as origins of toroidal shifts, and the CWS statistic) on simulated eye-tracking data where subjects
concentrate on a single object at differing locations. The grid column name indicates the first sample size (n1), and the
grid row indicates the shape of the second sample. The shape of the first sample follows the same distribution exhibited
in the first row. The horizontal axis indicates the second sample size (n2). For example, the bottom left graph shows the
number of significant test results (out of ten tests) between the first samples with 15 points and second samples with 15, 25,
40, 70, 100, 250, and 500 points. Note that the spaces between horizontal tick marks are only approximately represented.
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Fig. 31: A grid of line graphs showing the performance across a variety of rotations of the modified Syrjala test (using 0.3
proportion of points as origins of toroidal shifts, and the CWS statistic) on simulated eye-tracking data where subjects
concentrate on a single object at differing locations. The grid column name indicates the first sample size (n1), and the
grid row indicates the shape of the second sample. The shape of the first sample follows the same distribution exhibited
in the first row. The horizontal axis indicates the second sample size (n2). For example, the bottom left graph shows the
number of significant test results (out of ten tests) between the first samples with 15 points and second samples with 15, 25,
40, 70, 100, 250, and 500 points. Note that the spaces between horizontal tick marks are only approximately represented.
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Fig. 32: A grid of line graphs showing the performance across a variety of rotations of the modified Syrjala test (using
a threshold of 15 toroidal shifts, and the CWS statistic) on simulated eye-tracking data where subjects concentrate on a
single object at differing locations. The grid column name indicates the first sample size (n1), and the grid row indicates
the shape of the second sample. The shape of the first sample follows the same distribution exhibited in the first row. The
horizontal axis indicates the second sample size (n2). For example, the bottom left graph shows the number of significant
test results (out of ten tests) between the first samples with 15 points and second samples with 15, 25, 40, 70, 100, 250,
and 500 points. Note that the spaces between horizontal tick marks are only approximately represented.
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Fig. 33: A grid of line graphs showing the performance across a variety of rotations of the modified Syrjala test (using
a threshold of 25 toroidal shifts, and the CWS statistic) on simulated eye-tracking data where subjects concentrate on a
single object at differing locations. The grid column name indicates the first sample size (n1), and the grid row indicates
the shape of the second sample. The shape of the first sample follows the same distribution exhibited in the first row. The
horizontal axis indicates the second sample size (n2). For example, the bottom left graph shows the number of significant
test results (out of ten tests) between the first samples with 15 points and second samples with 15, 25, 40, 70, 100, 250,
and 500 points. Note that the spaces between horizontal tick marks are only approximately represented.
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Fig. 34: A grid of line graphs showing the performance across a variety of rotations of the modified Syrjala test (using
a threshold of 40 toroidal shifts, and the CWS statistic) on simulated eye-tracking data where subjects concentrate on a
single object at differing locations. The grid column name indicates the first sample size (n1), and the grid row indicates
the shape of the second sample. The shape of the first sample follows the same distribution exhibited in the first row. The
horizontal axis indicates the second sample size (n2). For example, the bottom left graph shows the number of significant
test results (out of ten tests) between the first samples with 15 points and second samples with 15, 25, 40, 70, 100, 250,
and 500 points. Note that the spaces between horizontal tick marks are only approximately represented.
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thresholds for the number of toroidal shifts employed in Figures 32–34, respectively.

Hence, as in Sections 6.3.1–6.3.4, only the results of tests using the CWS statistic are

shown in this section for consistency.

Specifically, Figure 27 shows that across all of the significant tests out of the ten

replications of the tests (vertical axes) across all of the number of rotations (horizontal

axes) the rotational modification test returns stable results except for some chance

variation. The test is capable of detecting almost all of the significant differences in

the bottom two rows, and captures a majority of differences in the third row for all

cases except for when n1 = 15 and n2 ≈ 40. In the first row, 178 out of the 3430 tests

are significant. This is roughly a 0.052 (or 5.2%) false positive rate. This result is on

target given that the significance level of the test is 5%.

In Section 6.3.2, the toroidal shift was shown to be more powerful in general

than the rotational test by simulation. However, Figure 28 shows the toroidal shift

modification results in an overall decrease in the numbers of significant tests for the

cases when the null hypothesis is false (bottom four rows) particularly for small sample

sizes. Still, the test is capable of detecting almost all of the significant differences in

the bottom row when the bivariate mean has shifted to the right and up by 0.35,

respectively. In the first row, 137 out of the 2940 are significant. This is roughly a

0.045 (or 4.5%) false positive rate. This result is slightly conservative given that the

significance level of the test is 5%.

Figures 29–31 show the test results for the combined rotational and toroidal shift

modified Syrjala tests, where the horizontal axes shows the number of rotations and

the proportions of toroidal shifts are 0.1, 0.2, and 0.3 in Figures 29–31, respectively.

Although some increase in power is observed over using toroidal shifts alone, the test

is still not as powerful as the rotational test for these simulated data. Again, the test

results also confirm relatively stable performance across the number of rotations and
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the proportions of points used as origins for the toroidal shifts. The false positive

rates given by the proportion of significant tests to the total number of tests in the

first row of subplots in Figures 29–31 is discussed more explicitly later in this section.

Instead of proportions of points for the toroidal shifts, the test results for the

combined rotational and toroidal shift modified Syrjala tests, where the horizontal

axes is the number of rotations and thresholds for the number of toroidal shifts are 15,

25, and 40 are shown in Figures 32–34, respectively. Again, some increase in power is

observed over using toroidal shifts alone. However, the test is still not as powerful as

the rotational test for these simulated data. Although these tests limit the number

of toroidal shifts to the lower of the combined sample sizes or the shift threshold, the

results are almost identical to that of the combined rotational and toroidal shift test

where proportions of points are used for toroidal shifts. Also, the test results confirm

relatively stable performance across the number of rotations and the thresholds of

points used as origins for the toroidal shifts.

As a reminder, common random numbers are being employed across all of the

simulations (see Section 6.1.3). Thus, the same ten replications of each simulation

scenario (e.g., cenbl vs. cenbl 0.3) pairs are being compared across these simulations

(Figures 27–34). Therefore, it is not reasonable to say that the unusually low number

of significant tests for the case when n1 = 250 and n2 ≈ 15 for combined modifications

are due to the differences in test parameters (i.e., proportion of toroidal shifts or

toroidal shift threshold size). The decrease in performance can be attributed to

chance variation within the small second sample. However, the rotational test was

notably able to detect all of the significant differences for these unusual cases.

An overview of the power and false positive rates of the tests employed in this

section are provided in Figures 35 and 36 and Tables 10 and 11. While the rotational

and toroidal shift modification tests are employed using all six of the test statistics
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(top two subplots in Figures 35 and 36), due to the stability of the test results regard-

less of the test statistic used only the CWS statistic was used within the combined

modification test (bottom subplot in Figures 35 and 36). As a reminder, the power

was computed by dividing the number of significant tests by the total number of tests

in which the null hypothesis was false (bottom four rows of graphs in Figures 27–34).

In Figure 35, the higher the power of a test the more likely the test is to reject the

null when it is indeed false. Theoretically, the maximum power a test can achieve is

one.

The higher power of the rotational tests above the toroidal tests is clearly seen

in Figure 35. Furthermore, if only the CWS statistic is compared across the tests,

while some power is gained from using the combined test over the toroidal test,

the rotational test is also shown to be more powerful than the combined rotational

and toroidal tests. This is contrary to the results shown in Section 6.4.2 where

the combined rotational and toroidal modifications test was shown to be the most

powerful and appropriately conservative test. However, the results in Figure 35 make

sense given the context of the simulations.

Recall that Section 6.4.2 provided the power and false positive rate summaries

for simulations which involved departures from completely spatially random data.

However, in this section the simulation involves shifts in circular bivariate normal

distributions which model eye-tracking fixation distributions. Also recall that the

Syrjala test has been shown to place a greater emphasis on data located close to the

four corners of the bounding rectangle (see Section 6.2.2 and McAdam et al. (2012)).

The rotational modified Syrjala tests have also been shown to place a greater emphasis

on data near the outer edge of the pooled bivariate distributions (see Section 6.3.1).

Hence, the high power of the rotational test in Figure 35 makes sense since the

largest differences in the bivariate empirical cumulative density functions lie around
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Fig. 35: A comparison of the power achieved by the tests discussed in this section
via a Cleveland dot plot. The tabs on the right separate the modifications into
rotations (Rot Mod), toroidal shifts (Toro Mod), and both rotations and toroidal
shifts (RotToro Mod). DWS, UWS, CWS, DWA, UWA, and CWA refer to the six
different proposed statistics (Section 5.1) for measuring the differences in the ECDFs.
While the rotational and toroidal shift modification tests are employed using all six
of the test statistics (top two subplots), only the CWS statistic was used within the
combined modification test (bottom subplot).
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Fig. 36: A comparison of the false positive rates achieved by the tests discussed in
this section via a Cleveland dot plot. The tabs on the right separate the modifications
into rotations (Rot Mod), toroidal shifts (Toro Mod), and both rotations and toroidal
shifts (RotToro Mod). DWS, UWS, CWS, DWA, UWA, and CWA refer to the six
different proposed statistics (Section 5.1) for measuring the differences in the ECDFs.
While the rotational and toroidal shift modification tests are employed using all six
of the test statistics (top two subplots), only the CWS statistic was used within the
combined modification test (bottom subplot). The vertical red line at 0.05 indicates
the significance level of the tests.
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Table 10: A table listing the test description, number of significant tests, total number
of tests, and power (rounded to the third decimal place) for all of the tests considered
in Figure 35.

Test Sig. Total
Description Tests Tests Power

DWS Rot 11 974 13 720 ≈ 0.873
UWS Rot 11 974 13 720 ≈ 0.873
CWS Rot 11 967 13 720 ≈ 0.872
DWA Rot 12 016 13 720 ≈ 0.876
UWA Rot 12 011 13 720 ≈ 0.875
CWA Rot 12 003 13 720 ≈ 0.875

DWS Toro 8700 11 760 ≈ 0.740
UWS Toro 8699 11 760 ≈ 0.740
CWS Toro 8671 11 760 ≈ 0.737
DWA Toro 8672 11 760 ≈ 0.737
UWA Toro 8674 11 760 ≈ 0.738
CWA Toro 8649 11 760 ≈ 0.735

CWS RotToro0.1 10 557 13 720 ≈ 0.769
CWS RotToro0.2 10 592 13 720 ≈ 0.772
CWS RotToro0.3 10 604 13 720 ≈ 0.773

CWS RotToro15Thrshld 10 584 13 720 ≈ 0.771
CWS RotToro25Thrshld 10 598 13 720 ≈ 0.772
CWS RotToro40Thrshld 10 606 13 720 ≈ 0.773
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Table 11: A table listing the test description, number of significant tests, total number
of tests, and false positive rates (rounded to the third decimal place) for all of the
tests considered in Figure 36.

Test Sig. Total False Positive
Description Tests Tests Rate

DWS Rot 170 3430 ≈ 0.050
UWS Rot 170 3430 ≈ 0.050
CWS Rot 178 3430 ≈ 0.052
DWA Rot 176 3430 ≈ 0.051
UWA Rot 177 3430 ≈ 0.052
CWA Rot 181 3430 ≈ 0.053

DWS Toro 135 2940 ≈ 0.046
UWS Toro 138 2940 ≈ 0.047
CWS Toro 137 2940 ≈ 0.047
DWA Toro 136 2940 ≈ 0.046
UWA Toro 142 2940 ≈ 0.048
CWA Toro 131 2940 ≈ 0.045

CWS RotToro0.1 173 3430 ≈ 0.050
CWS RotToro0.2 190 3430 ≈ 0.055
CWS RotToro0.3 179 3430 ≈ 0.052

CWS RotToro15Thrshld 182 3430 ≈ 0.053
CWS RotToro25Thrshld 177 3430 ≈ 0.052
CWS RotToro40Thrshld 184 3430 ≈ 0.054
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the outside edge of the two samples. However, since the true distributions are not

known in practice, it is still recommended to use the combined rotational and toroidal

modifications test as it is more generally suited to other types of data.

In Figure 36, the false positive rate is computed by dividing the number of

significant test results by the total number of tests computed when the null hypothesis

is true and both samples come from the same distribution (first row of graphs in

Figures 27–34). For false positive rates in Figure 36, test results should be as close

as possible to 0.05 (i.e., 5%, indicated by the horizontal line) when testing at the 5%

significance level. Test results which fall below 0.05 are indications of a conservative

nature in the test (i.e., a test which is less likely to reject the null when it is actually

true).

While the rotational test false positive rates seem to be relatively on target with

the significance level of 0.05 across all of the six test statistics, the toroidal test false

positive rates seem to be a little more conservative (i.e., all are slightly below the

significance level). If only the CWS statistic is compared across the tests, the false

positive rates of the combined rotational and toroidal tests seem to be closer to the

rotational false positive rate (which is slightly above the significance level) than the

toroidal false positive rate (which is slightly below the significance level). Overall,

the false positive rates do not differ considerably across the six test statistics within

either the rotational or toroidal tests.

Additionally, little trend is seen in the false positive rates of the combined rota-

tional and toroidal tests regardless of the proportions of points used for the origins

of toroidal shifts or the thresholds used for the number of toroidal shifts. In fact,

the 0.1 proportion of points gives a false positive rate closest to the significance level

(0.05) among the tests which use proportions of points. Similarly, the threshold of 25

toroidal shifts gives a false positive rates closest to the significance level among tests
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which use toroidal shift thresholds. These results provide additional evidence that a

0.1 proportion of points and a 25 toroidal shift threshold are sufficient.

Overall, while these simulations show that there are special cases in which the

rotational modification alone is the most powerful test among the modified Syrjala

tests, the combined rotational and toroidal test is still recommended, and the test

results confirm that there is little difference across the six statistics. Furthermore, the

tests are shown to be stable across an array of number of rotations, toroidal shifts,

or both (using either proportions of points or thresholds for the number of toroidal

shifts) in the case of the combined modified Syrjala tests, even for sample sizes as little

as 15 in each sample (which is more commonly seen in some eye-tracking applications

such as the USU Posture Study (see Chapters 4 and 7]).

6.5.4 Simulating Differences in Fixation Shape

The null hypothesis for this simulation is similar to Section 6.5.3. However,

here it is assumed that the subject is concentrating their visual attention on a single

object in the center of the [0, 1]× [0, 1] square. This is modeled as a bivariate normal

distribution with a mean coordinates of (0.5, 0.5) and variance-covariance matrix of[
0.005 0
0 0.005

]
.

Departures from the null hypothesis are modeled as distributions centered at

the same bivariate mean as the null distribution, but exhibiting departures from

the null covariance structure. Specifically, four departures from the null hypothesis

are modeled as bivariate normal distributions with mean coordinates as (0.5, 0.5)

and variance-covariance matrices as
[

0.005 0.000625
0.000625 0.005

]
,
[

0.005 0.00125
0.00125 0.005

]
,
[

0.005 0.001875
0.001875 0.005

]
,

and
[

0.005 0.0025
0.0025 0.005

]
, respectively. These variance-covariance matrices were chosen in

order to induce an approximate positive linear correlation between the horizontal

and vertical variables equal to 0.125, 0.25, 0.375, and 0.5, respectively.
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Results

Figure 37 also follows the general structure of result visualizations described in

Section 6.5.2. The abbreviation “cen” in the far right row labels indicates that a

bivariate normal distribution was used to generate the data in the center of the unit

square. The label “cov” and number following cov indicates the approximate posi-

tive linear correlation introduced between the horizontal and vertical variables, e.g.,

cov 0.125 indicates that the second sample was generated using a bivariate normal

distribution with a variance-covariance matrix of
[

0.005 0.000625
0.000625 0.005

]
(since a correlation

of 0.125 produces a covariance of 0.125 ×
√
0.005× 0.005 = 0.000625). In the first

row, 24 out of the 490 are significant. This is roughly 0.049 or 4.9%. This result also

agrees with the conservative nature of the test as seen in previous simulations (see

Sections 6.4.1 and 6.4.2).

The remaining four rows (when the null hypothesis is false) demonstrate an

increasing relationship between the number of significant tests and both the sample

size and magnitude of the change in covariance structure in the second sample’s

distribution. In one extreme, the far left line graph in the second row demonstrates

that for a small departure in the null distribution (specifically, an increase in the

off diagonal entries of the variance-covariance matrix by 0.125) and a small sample

size for the first sample, there are only three significant tests across all of the second

sample sizes. This is not much different from the subgraphs in the first row. This

is also evident when observing all of the cases in which the second sample size is 15

within the second row. However, for sufficiently large sample sizes, i.e. when both

sample sizes are larger than 250, the number of significant tests begins to depart from

the behavior exhibited in the first two rows.

The third row of line graphs demonstrates that for larger departures from the

null distribution (specifically, an increase in the off diagonal entries of the variance-
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Fig. 37: A grid of line graphs showing the performance of the modified Syrjala test (using 0.1 proportion of points as
origins of toroidal shifts, 8 rotations, and the CWS statistic) on simulated eye-tracking data where subjects concentrate
on a single object with differing fixation shapes. The grid column name indicates the first sample size (n1), and the grid
row indicates the shape of the second sample. The shape of the first sample follows the same distribution exhibited in the
first row. The horizontal axis indicates the second sample size (n2). For example, the bottom left graph shows the number
of significant tests (out of ten tests) between the first samples with 15 points and second samples with 15, 25, 40, 70, 100,
250, and 500 points. Note that the spaces between horizontal tick marks are only approximately represented.
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covariance matrix by 0.375), a majority of tests are significant for sample sizes larger

than 250. In the fourth row, this effect is also seen but for samples sizes greater than

100 (except for the case when both sample sizes are 100).

6.5.5 Simulating Differences in Fixation Allocation

While the null hypothesis is modeled as a bivariate normal distribution with a

mean coordinates of (0.25, 0.5) and a variance-covariance matrix of
[
0.005 0
0 0.005

]
, this

simulation focuses on a case where a subject gradually splits their attention between

two objects. Hence, the alternative distribution is modeled as a mixture of two bi-

variate normal distributions with identical variance-covariance matrices
[
0.005 0
0 0.005

]
,

and with one centered at (0.25, 0.5) (similar to the null hypothesis) while the second

is centered at (0.75, 0.5). Consequently, the second sample (for the alternative hy-

pothesis) is split between the two bivariate normal distributions in the second sample

using a binomial distribution. Four departures from the null are modeled this way

such that each exhibits an increased amount of attention being given to the right

object (while still maintaining most attention on the left object).

Specifically, let n2 be the sample size of the second sample with n2a and n2b being

the integer subsample sizes belonging to the left and right individual distributions,

respectively, that make up the bimodal mixture distribution for the second sample.

Then the subsample of data which belongs to the right distribution is modeled as

n2b ∼ binom(n2, pi), such that pi = i ∗ 0.05 for ith departure from the null hypothesis

where i = 1, 2, 3, 4. Hence, the subsample of data which belongs to the left distribution

can simply be computed as n2a = n2 − n2b.

Results

Here, Figure 38 also displays a grid of line graphs as described in Section 6.5.2.
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The abbreviation “cen l” in the far right row labels indicates that a bivariate normal

distribution was used to generate the data on the left side of the unit square. The

label “cen spt ” and subsequent number indicate the proportion of points in the

second sample being allocated to the bivariate normal distribution on the right side

of the unit square, e.g., cen spt 0.20 indicates that approximately 20% of the second

sample size is being allocated to the right bivariate normal distribution while the

remaining 80% will be allocated to the left distribution. The first row shows 24 out

of the 490 test results are significant. This is roughly 0.049 or 4.9%. This result also

agrees with the conservative nature of the test as seen in previous simulations (see

Sections 6.4.1 and 6.4.2).

The remaining four rows (when the null hypothesis is false) demonstrate an

increasing relationship between the number of significant tests and both the sample

size and proportion of points which move from the left object to the right object in

the second sample’s distribution. In one extreme, the far left line graph in the second

row (from the top) demonstrates that for a small departure in the null distribution

(specifically, assigning a binomial probability of 0.05 to the right distribution) and

a small sample size for the first sample, there is only one significant tests across all

of the second sample sizes. This is not much different from the subgraphs in the

first row. Similarly, the remaining subgraphs in the second row for larger sample n1

sample sizes show that there is not enough of a difference between the two samples

for the test to label many of the tests as significant. However, the third row of tests

which employ a binomial probability of 0.10, when both sample sizes are greater than

250 a majority of the test results are labeled as significant. In the third row, this

effect is also seen but for samples sizes greater than 100, and for only sample sizes of

greater than 70 in the forth row.



124

n1 = 15 n1 = 25 n1 = 40 n1 = 70 n1 = 100 n1 = 250 n1 = 500

cen_l
cen_spt_0.05

cen_spt_0.10
cen_spt_0.15

cen_spt_0.20

15 25 40 7010
0

25
0

50
0 15 25 40 7010
0

25
0

50
0 15 25 40 7010
0

25
0

50
0 15 25 40 7010
0

25
0

50
0 15 25 40 7010
0

25
0

50
0 15 25 40 7010
0

25
0

50
0 15 25 40 7010
0

25
0

50
0

0

5

10

0

5

10

0

5

10

0

5

10

0

5

10

Second sample size (n2)

S
ig

ni
fic

an
t T

es
ts

Fig. 38: A grid of line graphs showing the performance of the modified Syrjala test (using 0.1 proportion of points as
origins of toroidal shifts, 8 rotations, and the CWS statistic) on simulated eye-tracking data where subjects concentrate on
a single object at differing locations. The grid column name indicates the first sample size (n1), and the grid row indicates
the shape of the second sample. The shape of the first sample follows the same distribution exhibited in the first row. The
horizontal axis indicates the second sample size (n2). For example, the bottom left graph shows the number of significant
tests (out of ten tests) between the first samples with 15 points and second samples with 15, 25, 40, 70, 100, 250, and 500
points. Note that the spaces between horizontal tick marks are only approximately represented.
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6.5.6 Simulating the Introduction of a Single Outlier

The null hypothesis for this simulation is identical to Section 6.5.5 (i.e., it is

modeled as a bivariate normal distribution with a mean coordinates as (0.25, 0.5) and

variance-covariance matrix of
[
0.005 0
0 0.005

]
).

Four alternative hypothesis are modeled using the same distribution except that

a single outlier gaze point is introduced at increasing distances to the right of the

distribution. The coordinates of the outliers for the four departures are (0.375, 0.5),

(0.5, 0.5), (0.625, 0.5), and (0.75, 0.5), respectively.

Results

Figure 39 follows the general structure of result visualizations described in Sec-

tion 6.5.2. The abbreviation “mvnorm” in the far right row labels indicates that a

bivariate normal distribution was used to generate the data on the left side of the

unit square. The label “pnt ” and subsequent number indicate the horizontal coordi-

nates of the single outlier being generated, e.g., pnt 0.75 that a single outlier is being

included in the second sample with coordinates (0.5, 0.75). The first row shows 24

out of the 490 test results are significant. This is roughly 0.049 or 4.9%. This result

also agrees with the conservative nature of the test as seen in previous simulations

(see Sections 6.4.1 and 6.4.2).

However, while the four bottom rows in Figure 39 compare the effect of a single

outlier which strays further from the null distribution, the results are the same re-

gardless of the distance of the outlier from the null distribution. Namely, the number

of significant tests remains around the significance level (of 0.05) regardless of sample

sizes or magnitude of the departure of the outlier from the null distribution.

This result makes sense. Since the modified Syrjala tests compare differences

between the empirical cumulative distribution functions, the magnitude of space be-
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Fig. 39: A grid of line graphs showing the performance of the modified Syrjala test (using 0.1 proportion of points as
origins of toroidal shifts, 8 rotations, and the CWS statistic) on simulated eye-tracking data where subjects concentrate
on a single object across cases where a single straying outlier is also observed. The grid column name indicates the first
sample size (n1), and the grid row indicates the shape of the second sample. The shape of the first sample follows the
same distribution exhibited in the first row. The horizontal axis indicates the second sample size (n2). For example, the
bottom left graph shows the number of significant tests (out of ten tests) between the first samples with 15 points and
second samples with 15, 25, 40, 70, 100, 250, and 500 points. Note that the spaces between horizontal tick marks are only
approximately represented.
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tween points is not so important as the bivariate ordering of the points between the

two samples. Hence, since moving the outlier further from the null distribution does

not change the ranking of the outlier there is not enough departure from the null

distribution for the modified Syrjala test to label a proportion of the tests as signifi-

cant much more than the significance level, i.e., the number of significant tests in the

bottom four rows is similar that that described in the first row on average.

6.5.7 Simulating the Introductions of Many Outliers in a Single Sample

This simulation is related to the previous simulation discussed in Section 6.5.6,

except that instead of introducing only one fixed outlier into the second sample many

random outliers are introduced. The null distribution is identical (i.e., it is mod-

eled as a bivariate normal distribution with a mean coordinates as (0.25, 0.5) and

variance-covariance matrix of
[
0.005 0
0 0.005

]
). However, the four alternative hypothesis

are modeled using mixture distributions which contain both the null distribution and

a distribution for the random outliers. Specifically, the random outliers are modeled

using a inhomogeneous Poisson point process with an intensity function, fo, of

fo(x, y) = 790 ·
(
1− exp

{
− 80 ·

[
(x− 0.5)4 + (y − 0.5)4

]})
.

This is similar to the intensity function used to generate the Repel distribution de-

scribed in Section 6.1.1. This distribution was chosen to simulate the creation of

outliers by undesirable subject interactions with the eye-tracking device, e.g., blink-

ing. The four departures from the null distribution exhibit an increasing number of

outliers, specifically, 2, 4, 8, and 16 outlier points, respectively.
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Results

Figure 40 also displays a grid of line graphs as described in Section 6.5.2. How-

ever, the sample sizes listed in the figure do not include the added outliers included

in the departures from the initial distribution. As an example, the bottom left graph

shows the number of significant tests (out of ten tests) between the first samples with

15 points and second samples (including outliers) with 31, 41, 56, 86, 116, 366, and

516 points (or n2 = 15, 25, 40, 70, 100, 250, and 500 points when outliers are not

counted). The abbreviation “mvnorm” in the far right row labels indicates that a

bivariate normal distribution was used to generate the data in the center of the unit

square. The label “nse ” and subsequent number indicate the number of additional

outliers being generated, e.g., nse 16 indicates that 16 outliers are being generated in

addition to a bivariate normal distribution.

In the first row, 24 out of the 490 test results are significant. This is roughly

0.049 or 4.9%. This result also agrees with the conservative nature of the test as seen

in previous simulations (see Sections 6.4.1 and 6.4.2).

The remaining four rows (when the null hypothesis is false) demonstrate a pos-

itive association between the number of significant tests and the number of outliers

in addition to a negative association between the number of significant tests and

the sample sizes. When only two outliers are present (as seen in the second row of

subgraphs from the top), the performance of the test is similar to the null case (in

the first row). This makes sense given the results of the simulation of discussed in

Section 6.5.6. Little effect is also seen (in the third row) by four introduced outliers

except for a few cases, e.g., the four significant tests when n1 = 250 and n2 = 15.

The combined effect of sample size with number of outliers begins to be evident

in the forth row of line graphs. Note that for smaller samples sizes in the second

sample eight outliers can represent a large proportion of the overall distribution, i.e.,
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Fig. 40: A grid of line graphs showing the performance of the modified Syrjala test (using 0.1 proportion of points as
origins of toroidal shifts, 8 rotations, and the CWS statistic) on simulated eye-tracking data where subjects concentrate
on a single object while the second subject also exhibits increasing amounts of noise. The grid column name indicates the
first sample size (n1), and the grid row indicates the shape of the second sample. The shape of the first sample follows
the same distribution exhibited in the first row. The horizontal axis indicates the second sample size (n2). For example,
the bottom left graph shows the number of significant tests (out of ten tests) between the first samples with 15 points and
second samples with 15, 25, 40, 70, 100, 250, and 500 points. Note that the spaces between horizontal tick marks are only
approximately represented.
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when n2 = 15 the total sample size including the 16 outliers is 31, and the proportion

of outliers in the sample is approximately 0.52. Hence, when the first sample size

is greater than 100, a majority of tests are significant for n2 ≤ 25. In other words,

when a relatively large n1 provides a clear picture of what the null distribution is,

eight outliers make up a large enough component of the second sample for small n2

to trigger many significant results among the tests.

However, this effect is less pronounced as n2 grows. When n2 ≥ 40 eight outliers

represent less than 17% of the mixture distribution resulting in less than half of the

tests being significant in most cases (a few are exactly half of the tests). This overall

relationship between significant tests, sample sizes, and the number of outliers is only

emphasized further in the bottom row of graphs.

6.5.8 Simulating the Introductions of Many Outliers in Both Samples

This simulation is closely related to the previous simulation discussed in Sec-

tion 6.5.7, except that instead of introducing many outliers into the second sample

alone many random outliers are introduced within both samples. The initial distri-

bution remains the same (i.e., it is modeled as a bivariate normal distribution with a

mean coordinates as (0.25, 0.5) and variance-covariance matrix of
[
0.005 0
0 0.005

]
). How-

ever, the four mixture distributions which introduce outliers are drawn from when

creating the two independent samples (instead of the first sample always being drawn

from the initial distribution). Hence, all comparisons within this simulation only con-

sider cases for which the null hypothesis is true, and five null hypotheses are being

tested:
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The random outliers are still modeled using a inhomogeneous Poisson point pro-

cess with an intensity function, fo, of

fo(x, y) = 790 ·
(
1− exp

{
− 80 ·

[
(x− 0.5)4 + (y − 0.5)4

]})
,

similar to the intensity function used to generate the Repel distribution described in

Section 6.1.1. This simulation compares the performance of the modified Syrjala test

when assuming two subjects are focusing on a single object while also exhibiting a

similar number of outliers during data collection. The four numbers of outliers are 2,

4, 8, and 16 outlier points, respectively.

Results

Figure 41 shows the results of the simulation. Similar to the previous figures,

this figure displays a grid of line graphs showing the performance of the modified

Syrjala test (using 0.1 proportion of points as origins of toroidal shifts, 8 rotations,

and the CWS statistic) for this simulation. The grid column name indicates the first

sample size (n1), horizontal axes indicate the second sample size (n2). Note that

neither n1 nor n2 include the introduced outliers, but only represent the number of

points used to generate the bivariate normal distributions depicted in the center of

the unit square. Additionally, unlike the figures in Sections 6.5.3–6.5.7, the grid row

indicates the shape of both the first and second samples. The abbreviation “mvnorm”

in the far right row labels indicates that a bivariate normal distribution was used to

generate the data in the center of the unit square. The label “nse ” and subsequent

number indicate the number of additional outliers being generated in both samples,

e.g., nse 16 indicates that 16 outliers are being generated in addition to a bivariate

normal distribution for both samples. Hence, while the sample sizes vary across the
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columns and horizontal axes, each row demonstrates the performance of the test when

the null hypothesis is true. As an example, the bottom left graph shows the number

of significant tests (out of ten tests) between the first samples with 15 points (and 16

outliers) and second samples (including outliers) with 31, 41, 56, 86, 116, 366, and

516 points (or n2 = 15, 25, 40, 70, 100, 250, and 500 points when outliers are not

counted).

Overall, this simulation shows that when the proportion of outliers is about the

same between samples, the majority of tests indicate non-significance. Additionally,

when the proportion of outliers is relatively small (i.e., when the number of outliers

is less than four), the effect of outliers is negligible across all sample sizes, and a

majority of all tests are non-significant. This latter result can be seen in the top

three rows of subgraphs in Figure 41.

The former result is most noticeable in the bottom two rows of subgraphs. Notice

that for sample sizes relatively close to each other, the proportion of outliers within the

samples are relatively similar. Consequently, a majority of tests are non-significant.

In the other extreme, when the sample sizes are quite different, then the proportion

of outliers within the samples differ considerably. This results in a majority of tests

being significant. For example, in the bottom row of subgraphs where both samples

have 16 outliers, when n1 = 70 most of the tests are non-significant for 25 ≤ n2 ≤ 250.

However, for n2 = 15 or n2 = 500, the proportion of outliers to the sample sizes are

approximately 0.52 and 0.03, respectively. This results in a majority of the tests

being significant.

6.5.9 Simulating Differences in Fixation Location, Shape, and Outliers

within the USU Posture Study Data

While the simulations discussed in Sections 6.5.3–6.5.8 show the performance of
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Fig. 41: A grid of line graphs showing the performance of the modified Syrjala test (using 0.1 proportion of points as
origins of toroidal shifts, 8 rotations, and the CWS statistic) on simulated eye-tracking data where subjects concentrate
on a single object while both subjects also exhibit increasing amounts of noise. The grid column name indicates the first
sample size (n1), and the grid row indicates the shape of the second sample. The shape of the first sample follows the
same distribution exhibited in the first row. The horizontal axis indicates the second sample size (n2). For example, the
bottom left graph shows the number of significant tests (out of ten tests) between the first samples with 15 points and
second samples with 15, 25, 40, 70, 100, 250, and 500 points. Note that the spaces between horizontal tick marks are only
approximately represented.
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the modified Syrjala tests on generated data which are more closely representative of

eye-tracking realizations, the scenarios modeled are simple and only meant to show

the performance of the test for isolated incremental changes between the samples. The

simulation in this section, however, generates data which models more complicated

real-life data taken from the USU Posture Study (see Chapter 4 for more details).

However, this simulation builds upon those discussed in Sections 6.5.3–6.5.8 by

demonstrating how changes in fixation location, fixation shape, and the introduction

of outliers (simulated individually in Sections 6.5.3, 6.5.4, and 6.5.7, respectively) have

upon the performance of the test. The impact of changes to all three simultaneously

is also considered. For a closer look at the affect of changes in proportions of points

allocated between the various gaze point clusters (simulated on a simpler lever in

Section 6.5.5), see Section 6.5.10.

Consequently, the comparison between the aggregated gaze points from the treat-

ment and control groups for posture ID 17 within the USU Posture Study was selected

as a basis from which to construct the generated data for this simulation. Figure 42

compares the scatterplots of the gaze points from these two groups side-by-side. This

data was selected to show how a collective change in fixation location, fixation shape,

and introduction of additional outliers contribute to the significant differences in gaze

point distributions between these two groups.

To generate data similar to that of the treatment and control groups, eleven com-

ponents were identified as contributors to the mixture distributions, namely, compo-

nent distributions which model the clusters located at the crown of the head, center

of the neck, surrounding neck region, right shoulder, surrounding right shoulder re-

gion, between the knees and thighs, right foot, surrounding right foot region, left

foot, between the feet, as well as a distribution modeling the outliers caused by the

eye-tracking equipment occasionally incorrectly assigning gaze point locations. These
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Fig. 42: Scatterplots of the aggregated gaze points for the treatment (left) and control
(right) groups for posture ID 17 taken from the USU Posture Study (Symanzik et al.,
2017, 2018; Studenka et al., 2020; Coltrin et al., 2020; McKinney and Symanzik, 2019,
2021).

clusters are referred to using the following abbreviations (and are listed in the same

order as the brief cluster descriptions given above in the same paragraph): head, neck,

sur. neck, shoulder, sur. shoulder, legs, r. foot, sur. r. foot, l. foot, b. feet, and noise.

From here, a null distribution was constructed in addition to four alternative

distributions which depict departures from the null distribution similar to the dif-

ferences seen between the two scatterplots in Figure 42. The individual component

distributions were modeled using bivariate normal distributions except for the noise

distribution which was a bivariate uniform distribution (that spans the unit square).

The bivariate normal distributions were constructed using the bivariate means of the

clusters as well as the two largest directions of variability within the clusters.

For example, after the data was rescaled to fit within the unit square, the center
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of the legs cluster of the control group (left scatterplot in Figure 42) was identified as

the coordinates µc = (0.54, 0.29). The two largest directions of variability are vectors

which start from the center and point to the approximate 95th bivariate percentile of

the cluster located at p1 = (0.80, 0.20) and p2 = (0.63, 0.39), respectively. Hence the

vectors are computed as vi = pi − µc (for i = 1, 2). The variance-covariance matrix

can then be computed as follows: Let vi be the largest two eigenvectors belonging to

the eigen-decomposition of the variance-covariance matrix of the cluster (Σ). Then

the the corresponding eigenvalues can be computed as the Euclidean norm of the

components of the eigenvectors: λi = ||vi||2. Then let Λ =
[
λ1 0
0 λ2

]
, and E = [vT1 , v

T
2 ]

such that T is the transpose operator. Using the eigen-decomposition of Σ, Σ can be

factorized as Σ = EΛE−1, where E−1 is the inverse of E. Hence, for this example,

Σ ≈
[

0.0196 −0.0052
−0.0052 0.0035

]
.

As a mixture distribution, the sample must be randomly split into eleven subsam-

ples. Using the control groups aggregated data as a baseline, subsample proportions

were identified for each of the component clusters. Using these subsample propor-

tions, realizations from a multinomial distribution were drawn to allocate the sample

sizes randomly to the different component distributions. The sample size was as-

signed as the number of trials for the multinomial distribution, while the subsample

proportions were assigned as the probabilities of success for each of the multinomial

events. The probabilities are listed in Table 12.

While the null distribution is patterned closely to the aggregated gaze points of

the control group, the three departures from the null are expressed as (1) changes

in the center of the legs distribution from (0.54, 0.29) to (0.41, 0.34), (2) changes

in the covariance structure for the head, neck, sur. shoulder, and sur. r. foot dis-

tributions (see Table 13), (3) an increase in the multinomial probability of success

for the event associated with the noise distribution from 0.004 to 0.0178. When
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Table 12: A table of multinomial event success probabilities for the mixture distri-
bution subsample allocation.

Cluster Name Multinomial Probability
head 0.0118
neck 0.0811
sur. neck 0.0295
shoulder 0.0959
sur. shoulder 0.1032
legs 0.2065
r. foot 0.1032
sur. r. foot 0.2065
l. foot 0.1180
b. feet 0.0265
noise 0.0040

increasing the probability of success for the event associated with the noise distri-

bution, the remaining probabilities in the multinomial distribution are decreased by

(0.0178 − 0.004)/10 = 0.00138 in order to maintain a proper sum to 1 in the multi-

nomial event probabilities. A combination of all three departures from the null dis-

tribution is also considered, and is patterned after the distribution of the aggregated

gaze points for the treatment group.

Results Across All Modified Syrjala Tests

In Section 6.5.3 the modified Syrjala tests were shown to exhibit stable results

across an array of rotations, toroidal shifts, and both rotations and toroidal shifts

in eye-tracking inspired simulations which involved departures from bivariate normal

data. It was also shown that little difference in the test results are observed across

six different statistics within the modified Syrjala tests. Consequently, the combined

rotational and toroidal shift modifications with the CWS statistic are employed again

to establish stable results across the smaller sample sizes using more complex eye-

tracking inspired data, and to reaffirm the sensible default parameter values (initially
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Table 13: A table of approximate null and alternative variance-covariance matrices
(rounded to the second decimal place) for bivariate normal distributions used to gen-
erate synthetic gaze point clusters. Note that while the noise cluster (not listed in this
table) used the same random bivariate uniform distribution for both the null and al-
ternative hypotheses, the multinomial probability assigned to the outliers subsample
is 0.004 and 0.0178 for the null and alternative distributions, respectively. Addition-
ally, while changes where exhibited in the covariance structures for the head, neck,
sur. shoulder, and sur. r. foot clusters, the remaining variance-covariance matrices are
the same between the null and alternative distributions.

Cluster Name Null Covariance Alternative Covariance

head
[
0.11 0
0 0.06

] [
0.11 0
0 0.15

]
neck

[
0.06 0
0 0.05

] [
0.08 0
0 0.12

]
sur. neck

[
0.12 −0.04
−0.02 0.05

] [
0.12 −0.04
−0.02 0.05

]
shoulder

[
0.07 0
0 0.07

] [
0.07 0
0 0.07

]
sur. shoulder

[
0.12 0
0 0.12

] [
0.13 0.03
0.02 0.11

]
legs

[
0.24 −0.04
−0.1 0.17

] [
0.24 −0.04
−0.1 0.17

]
r. foot

[
0.1 0.01
0.03 0.07

] [
0.1 0.01
0.03 0.07

]
sur. r. foot

[
0.19 0.03
0.03 0.13

] [
0.2 0.01
0.01 0.18

]
l. foot

[
0.14 −0.03
−0.04 0.13

] [
0.14 −0.03
−0.04 0.13

]
b. feet

[
0.11 0
−0.01 0.1

] [
0.11 0
−0.01 0.1

]
proposed from the simulations with larger samples in Section 6.4.2) for the distdiffR

R package functions (described in more detail in Chapter 8). Only the results of tests

using the CWS statistic are shown in this section for consistency.

Consequently, the format of Figures 43–48 differ slightly from the others within

Sections 6.3–6.4.2. While these figures still display grids of line graphs making com-

parisons between simulated differences in aggregated gaze point distributions from

the treatment and control groups for posture ID 17 within the USU Posture Study

(detailed in Section 6.5.9) for the same sample sizes (15, 25, 40, 70, 100, 250, and

500), the horizontal axes differs from that described in Section 6.5.2. The horizontal

axes show the number of rotations (similar to the simulation Figure 18 in Section 6.3).
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Fig. 43: A grid of line graphs showing the performance of the modified Syrjala test (using 0.1 proportion of points as origins
of toroidal shifts, 8 rotations, and the CWS statistic) on simulated eye-tracking data which is similar to the aggregated
subject contributions to Posture ID 17 (see Appendix C). The grid column name indicates the first sample size (n1), and
the grid row indicates the shape of the second sample. The shape of the first sample follows the same distribution exhibited
in the first row. The horizontal axis indicates the second sample size (n2). For example, the bottom left graph shows the
number of significant tests (out of ten tests) between the first samples with 15 points and second samples with 15, 25, 40,
70, 100, 250, and 500 points. Note that the spaces between horizontal tick marks are only approximately represented.
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Fig. 44: A grid of line graphs showing the performance of the modified Syrjala test (using 0.2 proportion of points as origins
of toroidal shifts, 8 rotations, and the CWS statistic) on simulated eye-tracking data which is similar to the aggregated
subject contributions to Posture ID 17 (see Appendix C). The grid column name indicates the first sample size (n1), and
the grid row indicates the shape of the second sample. The shape of the first sample follows the same distribution exhibited
in the first row. The horizontal axis indicates the second sample size (n2). For example, the bottom left graph shows the
number of significant tests (out of ten tests) between the first samples with 15 points and second samples with 15, 25, 40,
70, 100, 250, and 500 points. Note that the spaces between horizontal tick marks are only approximately represented.
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Fig. 45: A grid of line graphs showing the performance of the modified Syrjala test (using 0.3 proportion of points as origins
of toroidal shifts, 8 rotations, and the CWS statistic) on simulated eye-tracking data which is similar to the aggregated
subject contributions to Posture ID 17 (see Appendix C). The grid column name indicates the first sample size (n1), and
the grid row indicates the shape of the second sample. The shape of the first sample follows the same distribution exhibited
in the first row. The horizontal axis indicates the second sample size (n2). For example, the bottom left graph shows the
number of significant tests (out of ten tests) between the first samples with 15 points and second samples with 15, 25, 40,
70, 100, 250, and 500 points. Note that the spaces between horizontal tick marks are only approximately represented.
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Fig. 46: A grid of line graphs showing the performance of the modified Syrjala test (using a threshold of 15 points as origins
of toroidal shifts, 8 rotations, and the CWS statistic) on simulated eye-tracking data which is similar to the aggregated
subject contributions to Posture ID 17 (see Appendix C). The grid column name indicates the first sample size (n1), and
the grid row indicates the shape of the second sample. The shape of the first sample follows the same distribution exhibited
in the first row. The horizontal axis indicates the second sample size (n2). For example, the bottom left graph shows the
number of significant tests (out of ten tests) between the first samples with 15 points and second samples with 15, 25, 40,
70, 100, 250, and 500 points. Note that the spaces between horizontal tick marks are only approximately represented.
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Fig. 47: A grid of line graphs showing the performance of the modified Syrjala test (using a threshold of 25 points as origins
of toroidal shifts, 8 rotations, and the CWS statistic) on simulated eye-tracking data which is similar to the aggregated
subject contributions to Posture ID 17 (see Appendix C). The grid column name indicates the first sample size (n1), and
the grid row indicates the shape of the second sample. The shape of the first sample follows the same distribution exhibited
in the first row. The horizontal axis indicates the second sample size (n2). For example, the bottom left graph shows the
number of significant tests (out of ten tests) between the first samples with 15 points and second samples with 15, 25, 40,
70, 100, 250, and 500 points. Note that the spaces between horizontal tick marks are only approximately represented.
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Fig. 48: A grid of line graphs showing the performance of the modified Syrjala test (using a threshold of 40 points as origins
of toroidal shifts, 8 rotations, and the CWS statistic) on simulated eye-tracking data which is similar to the aggregated
subject contributions to Posture ID 17 (see Appendix C). The grid column name indicates the first sample size (n1), and
the grid row indicates the shape of the second sample. The shape of the first sample follows the same distribution exhibited
in the first row. The horizontal axis indicates the second sample size (n2). For example, the bottom left graph shows the
number of significant tests (out of ten tests) between the first samples with 15 points and second samples with 15, 25, 40,
70, 100, 250, and 500 points. Note that the spaces between horizontal tick marks are only approximately represented.
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Furthermore, the abbreviation “postID17” on the far right of the top row of

Figures 43–48 (for the null distribution) indicates that a bivariate normal mixture

distribution (similar to posture ID 17 from the USU Posture Study control group)

was used to generate the data (see Section 6.5.9 for more details). The three de-

partures from the null (shown on the far right of the second through fourth rows)

are expressed as (1) changes in the center of the legs distribution from (0.54, 0.29)

to (0.41, 0.34) abbreviated as “postID17 cen”, (2) changes in the covariance struc-

ture for the head, neck, sur. shoulder, and sur. r. foot distributions (see Table 13)

abbreviated as “postID17 cov”, and (3) an increase in the multinomial probability

of success for the event associated with the noise distribution from 0.004 to 0.0178

abbreviated as “postID17 nse”. The remaining departure from the null distribution

in the fifth row is a combination of all three of the other departures (“postID17 cen”,

“postID17 cov”, and “postID17 nse”) and is abbreviated as “postID17 all”.

Overall, regardless of the number of rotations, proportions of points used for

toroidal shifts, or toroidal shift thresholds in each test, Figures 43–48 exhibit almost

the same test results aside from chance variation. For the postID17 cen case, all of the

tests exhibit difficulty in detecting at least a majority (greater than or equal to five

out of ten) of significant differences until both sample sizes are at least 250 (except for

a few exceptions). A similar majority is not achieved in the postID17 cov case until

both sample sizes are 500. However, the postID17 nse case never achieves consistently

above six out of ten tests across all of the test modifications. Additionally, while all of

the departures from the null distribution are combined in the postID17 all case, only

a few additional cases achieve above five out of ten tests as statistically significant as

compared to the postID17 cen case. Hence, the postID17 cen departures within the

postID17 all case seem to be contributing the most to the total number of significant

differences being detected.
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As a reminder, common random numbers are being employed across all of the

simulations (see Section 6.1.3). Thus, the same ten replications of each simulation

scenario (e.g., postID17 vs. postID17 cen) pairs are being compared across these

simulations (Figures 27–34). Therefore, it is not reasonable to say that the increases

in the number of significant tests for the case when n1 = 25 and n2 ≈ 250 for the

postID17 all case are due to the test modifications. The increase in performance can

be attributed to chance variation in the samples.

An overview of the power and false positive rates of the tests employed in this

section are provided in Figures 49 and 50 and Tables 14 and 15. Due to the stability of

the test results regardless of the test statistic used shown in Sections 6.4.2 and 6.5.3,

only the CWS statistic was used within the combined modification test in Figures 35

and 36. As a reminder, the power was computed by dividing the number of significant

tests by the total number of tests in which the null hypothesis was false (bottom four

rows of graphs in Figures 43–48). In Figure 49, the higher the power of a test the

more likely the test is to reject the null when it is indeed false. Theoretically, the

maximum power a test can achieve is one.

Table 14: A table listing the test abbreviation, number of significant tests, total
number of tests, and power (rounded to the third decimal place) for all of the tests
considered in Figure 49.

Test Sig. Total
(Abbreviation) Tests Tests Power

CWS RotToro0.1 1897 13 720 ≈ 0.138
CWS RotToro0.2 1869 13 720 ≈ 0.136
CWS RotToro0.3 1902 13 720 ≈ 0.139

CWS RotToro15Thrshld 1862 13 720 ≈ 0.136
CWS RotToro25Thrshld 1877 13 720 ≈ 0.137
CWS RotToro40Thrshld 1902 13 720 ≈ 0.139

Overall, the power of the tests in Figure 49 are all much lower than the power

shown in Section 6.4.2. However, the results in Figure 49 make sense given the context
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Fig. 49: A comparison of the power achieved by the tests discussed in this section via
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section via a horizontal dot plot. The tab on the right indicates that both rotations
and toroidal shifts (RotToro Mod) are being used within the tests. The vertical red
line at 0.05 indicates the significance level of the tests.
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Table 15: A table listing the test abbreviation, number of significant tests, total
number of tests, and false positive rates (rounded to the third decimal place) for all
of the tests considered in Figure 50.

Test Sig. Total False Positive
(Abbreviation) Tests Tests Rate

CWS RotToro0.1 161 3430 ≈ 0.047
CWS RotToro0.2 148 3430 ≈ 0.043
CWS RotToro0.3 152 3430 ≈ 0.044

CWS RotToro15Thrshld 157 3430 ≈ 0.046
CWS RotToro25Thrshld 149 3430 ≈ 0.043
CWS RotToro40Thrshld 162 3430 ≈ 0.047

of the simulations. The simulations analyzed in Section 6.4.2 involve strong depar-

tures from completely spatially random bivariate distributions, whereas the simula-

tions in this section are comparing small changes to the postID17 mixture distribution.

Additionally, these simulations explore a larger number of cases with smaller sample

sizes. Similar to a standard power analysis (in the field of experimental design) where

small differences will not be seen as statistically significant until a sufficient sample

size is obtained, so are many of the test results in this section. Hence, it is little

surprise that the tests resulted in such the low power. Nonetheless, stable results are

seen in the relatively similar values for power across the tests in Figure 49.

In Figure 36, the false positive rate is computed by dividing the number of

significant test results by the total number of tests computed when the null hypothesis

is true and both samples come from the same distribution (first row of graphs in

Figures 43–48). For false positive rates in Figure 50, test results should be as close

as possible to 0.05 (i.e., 5%, indicated by the horizontal line) when testing at the 5%

significance level. Test results which fall below 0.05 are indications of a conservative

nature in the test (i.e., a test which is less likely to reject the null when it is actually

true).
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Additionally, little trend is seen in the false positive rates of the combined rota-

tional and toroidal tests regardless of the proportions of points used for the origins

of toroidal shifts or the thresholds used for the number of toroidal shifts. This case

shows that all of the tests achieve a conservative false positive rate (below the signif-

icance level of 0.05). While the false positive rate of the 0.1 proportion test is closest

to the significance level among the proportion tests with a false positive rate of 0.047,

the 25 threshold is the most conservative with a false positive rate of approximately

0.043. Still, these results combined with the results of Sections 6.4.2 and 6.5.3 provide

evidence that a 0.1 proportion of points and a 25 toroidal shift threshold are sensible

default parameters for the distdiffR R package functions (described in more detail

in Chapter 8).

Results for the Rot8Toro0.1 Version of the Modified Syrjala Test

Figure 51 also displays a grid of line graphs as described in Section 6.5.2. The

first row shows 21 out of the 490 test results are significant. This is roughly 0.043 or

4.3%. This result agrees with the conservative nature of the test as seen in previous

simulations (see Sections 6.4.1 and 6.4.2).

In the second row, a single departure from the null distribution is analyzed.

Particularly, a shift of the legs distribution from a center coordinates of (0.54, 0.29) to

(0.41, 0.34), i.e. a shift of
√

(0.54− 0.41)2 + (0.29− 0.34)2 ≈ 0.14 in magnitude. This

is approximately the same magnitude of shift exhibited in the most extreme departure

from in null of for the previous simulation in Section 6.5.3. However, while a shift of

this magnitude resulted in almost all of the tests being significant in the bottom rows

of the figures in Section 6.5.3, the legs distribution only makes up approximately 20%

of the mixture distribution. Hence, a strong indication of significance (a majority

of the tests being significant) does not occur until n1 ≥ 100 and n2 ≈ 500. Hence,
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Fig. 51: A grid of line graphs showing the performance of the modified Syrjala test (using 0.1 proportion of points as origins
of toroidal shifts, 8 rotations, and the CWS statistic) on simulated eye-tracking data which is similar to the aggregated
subject contributions to Posture ID 17 (see Appendix C). The grid column name indicates the first sample size (n1), and
the grid row indicates the shape of the second sample. The shape of the first sample follows the same distribution exhibited
in the first row. The horizontal axis indicates the second sample size (n2). For example, the bottom left graph shows the
number of significant tests (out of ten tests) between the first samples with 15 points and second samples with 15, 25, 40,
70, 100, 250, and 500 points. Note that the spaces between horizontal tick marks are only approximately represented.
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larger sample sizes or larger shifts in gaze point component distributions must occur

in order to detect significance for these more complex mixture distributions which

more closely pattern real-life data.

The third row analyzes a departure from the initial distribution through changes

in the covariance structures for the head, neck, sur. shoulder, and sur. r. foot distri-

butions. This is similar to the simulation studied in Section 6.5.4. However, here four

of the component distributions have changing covariance structures (which make up

roughly 40% of the overall mixture distribution) instead of only one main distribu-

tion. Hence, greater changes in the covariance structure or larger sample sizes are

needed in order to make a majority of the tests significant. Indeed, this only occurs

when n1 = 500 and n2 = 500.

The fourth row from the top compares the initial mixture distribution to a similar

one except with a larger proportion of noise. The increase of the proportion of noise

from approximately 0.004 to 0.0178 was chosen to reflect the differences in proportions

of outliers exhibited between the treatment and control groups of the USU Posture

Study. However, we see here that none of the combinations of sample sizes resulted

in a majority of tests being significant. This result contributes to the foundation of

evidence which suggests that the test is relatively robust in the presence of a small

number of outliers (see also Sections 6.5.6, 6.5.7, and 6.5.8).

The bottom row combines all of the departures from previous three rows. The

results are quite similar to the second row, which suggests that while there is some

amount of contribution to significance from changes in the covariance structures and

additional outliers, a majority of the significance is being contributed by the change

in the center of gaze point clusters. This result is consistent with the previous results

found in the simulations in Sections 6.5.3–6.5.8.



152

6.5.10 Simulating Differences in Fixation Allocation within the USU Pos-

ture Study Data

Similar to the simulation in Section 6.5.9, the simulation in this section also

employs generated data which models more complicated real-life data such as data

taken from the USU Posture Study (see Chapter 4 for more details).

However, while the simulation in Section 6.5.9 builds upon those discussed in

Sections 6.5.3, 6.5.4, 6.5.7, and 6.5.8, this simulation aims at building upon the sim-

ulation carried out in Section 6.5.5 where the second subject’s visual attention was

split between two objects. This simulation takes a closer look at the affect of changes

in proportions of points allocated between the various gaze point clusters.

The first sample is still modeled exactly as described in Section 6.5.9. However,

instead of the four departures from the initial distribution exhibiting changes the

cluster centers, cluster shape, or an increased presence of outliers, the four departures

differ only in the multinomial probabilities assigned to the clusters.

Specifically, Figure 52 displays five bar charts of the multinomial event success

probabilities (vertical axes) for each mixture distribution cluster (horizontal axes)

for the original distribution (top-center) as well as each of the four departures from

the initial distribution (lower four bar charts displayed in order of top-left, top-right,

bottom-left, and bottom-right). The departures gradually change the multinomial

probabilities from those approximated by the original data to a uniform probability

across all of the clusters except for the between feet (abbreviated as b. feet) and noise

distributions.

The multinomial probabilities of these latter two distributions were held constant

in this simulation for several reasons. First, the b. feet distribution is unique in that

it was likely created by subjects looking from the posture in the projected image

down to a time bar and back up at the posture. Some form of the data can be
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Fig. 52: A side-by-side bar chart displaying the multinomial event success proba-
bilities (vertical axes) for each mixture distribution cluster (horizontal axes) for the
initial distribution (left-most bar in each group) as well as each of the four departures
from the initial distribution (four right-most bars in each group, respectively).

seen throughout several other aggregated collections of the gaze points between the

treatment and control groups. Hence, since this cluster of gaze points is more related

to the learning curve of the experiment and less related to what subjects are looking

for when trying to assess the postural stability of a depicted actor, it is omitted from

the uniform flattening of the multinomial probabilities.

Similarly, the amount of noise in the data is much more likely related to inter-

ference with the ability of the eye-tracking device accurately assigning coordinates to

gaze points (due to a variety of unknown circumstances, e.g., the frequency of subject

blinking during the experiment), and less likely to be related to what subjects are

looking for when trying to assess the postural stability of a depicted actor. Hence,

the multinomial event success probability associated with noise is held constant for
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this simulation.

Thus, for the first sample, the cluster probabilities are assigned as labeled in

Table 12. When assuming that the null hypothesis is true, the second sample is also

generated using the same multinomial probabilities. However, when assuming the null

hypothesis is false, and some departure from the initial distribution has occurred, the

probabilities for the second sample are taken from one of the four lower bar charts in

Figure 52.

These individual probabilities were computed in the following way. First, com-

pute the average probability (µc) while omitting the b. feet and noise probabilities

(0.0265 and 0.004, respectively).

µc =
1− 0.0265− 0.004

11

Then, fi(pc) the new probability for the ith departure from the original distribution

can be computed.

fi(pc) =


pc − i · |pc−µc|

11
, if pc ≥ µc

pc + i · |pc−µc|
11

, if pc < µc

,

where pc is the original multinomial event success probability for the given cluster.

Results

Figure 53 displays a grid of line graphs as described in Section 6.5.2. Here,

the first row shows 39 out of the 490 test results are significant. This is roughly

0.08 or 8%. This result is greater than the 5% significance level, which does not

agree with the conservative nature of the test as seen in previous simulations (see

Sections 6.4.1 and 6.4.2). However, this is likely due to chance error as a repetition of

the simulation using different random number seeds resulted in a false positive rate
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below the significance level.

In the remaining four rows, the departures from the null distribution are exhibited

by reassigning the multinomial probabilities for the various clusters according to the

method discussed in the previous section. A few of these differences in proportion of

gaze points being allocated to another object of interest are similar to those exhibited

in the previous simulation in Section 6.5.5. Indeed, the results of this simulation are

close to those displayed in Figure 38. Hence, similar larger sample sizes or larger

differences in proportions of gaze points in component distributions (or both) must

occur in order to detect significance for a majority of these more complex mixture

distributions which more closely pattern real-life data.
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Fig. 53: A grid of line graphs showing the performance of the modified Syrjala test (using 0.1 proportion of points as origins
of toroidal shifts, 8 rotations, and the CWS statistic) on simulated eye-tracking data which is similar to the aggregated
subject contributions to Posture ID 17 (see Appendix C). The grid column name indicates the first sample size (n1), and
the grid row indicates the shape of the second sample. The shape of the first sample follows the same distribution exhibited
in the first row. The horizontal axis indicates the second sample size (n2). For example, the bottom left graph shows the
number of significant tests (out of ten tests) between the first samples with 15 points and second samples with 15, 25, 40,
70, 100, 250, and 500 points. Note that the spaces between horizontal tick marks are only approximately represented.
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6.5.11 Eye-Tracking Inspired Simulation Results

Overall, the simulations carried out in Sections 6.5.3–6.5.10 provide a more accu-

rate view of the performance of the modified Syrjala test (when using 0.1 proportion

of points as toroidal shift origins, eight rotations, and the CWS statistic) when applied

to data which more closely represent that taken from eye-tracking analysis.

Specifically, although outliers are commonly found in eye-tracking data (as men-

tioned in Chapter 3), the test has been shown to be robust against a small number of

outliers (see Sections 6.5.6, 6.5.7, 6.5.8, and 6.5.9). Furthermore, the test can detect a

variety of differences between samples, including differences in gaze point cluster cen-

ters (Sections 6.5.3 and 6.5.9), cluster shapes (Sections 6.5.4 and 6.5.9), proportions

allocated to different objects being viewed by subjects (Sections 6.5.5 and 6.5.10),

and proportions of noise (Sections 6.5.7, 6.5.8 and 6.5.9).

However, for some of the simulated the differences which are subtle and/or when

the sample sizes are relatively small, the test is unable to label a majority of the

comparisons as significant. Still, the overall performance of the test on simulated eye-

tracking data is sufficient to say that the test is well suited for eye-tracking analysis.

The test is applied to the USU Posture Study data in Chapter 7.

6.6 Conclusions from the Simulation Results

From the series of simulations that have been discussed throughout Sections 6.2–

6.5, the following conclusions can be made:

� The Syrjala (1996) test has been shown to depend upon data aggregation tech-

niques such as regular and random binning. It is recommended to use another

bivariate two sample test of distributional equality which does not assume iden-

tical sampling locations. Such tests include the Energy test by Székely and

Rizzo (2004), the kernel maximum mean discrepancy by Gretton et al. (2012),
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the Friedman and Rafsky (1979) generalization to the Kolmogorov (1933) test,

or one of the modified Syrjala tests proposed in this dissertation.

� The modified Syrjala tests have been shown to be insensitive to differences in

the weightings of the tests statistics, and only a marginal gain in power was

found when using squared differences in the ECDFs as compared to absolute

differences. Additionally, all of the tests were shown to produce relatively stable

results regardless of the number of rotations or toroidal shifts explored within

the simulations.

� While the modified Syrjala tests which employ toroidal shifts achieve roughly

the same power as the tests which employ both rotational and toroidal shifts, the

latter tests achieve an average false positive rate (0.03 vs. 0.045, respectively)

closer to the significance level (0.05). Thus, the combined modifications produce

conservative tests which are more powerful in the face of all departures from the

null than the tests which employ toroidal shifts alone. However, this balance

comes at the cost of increased computational complexity.

� The modified Syrjala test which uses eight rotations, 0.1 proportion of points as

origins for toroidal shifts, and the CWS statistic has been shown by simulation

to achieve a higher number of significant tests (when the null is false) than

several other competing methods including the Energy test by Székely and Rizzo

(2004), the kernel maximum mean discrepancy by Gretton et al. (2012), the

Friedman and Rafsky (1979) generalization to the Kolmogorov (1933) test, and

the original Syrjala (1996) test (when preliminary data binning is employed).

� The modified Syrjala test which uses a threshold of 25 randomly chosen points

from the pooled sample as origins for toroidal shifts (see Section 6.3.4) achieves

comparable results as the tests which employ proportions of points as origins
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for toroidal shifts (see Section 6.3.3). This provides motivation to use a default

threshold value for the tests in the R package (see Chapter 8), which guides new

users of the package toward relatively reasonable parameter values.

� The modified Syrjala tests which employ the CWS statistic, eight rotations, and

0.1 proportions of points as toroidal shifts, or thresholds of 25 toroidal shifts

have been shown to be well suited to certain types of eye-tracking data by simu-

lation. Specifically, the tests are robust to a reasonable number of outliers, and

can detect a variety of differences in distributional structure. Consequently,

these tests are used when analyzing data from the USU Posture Study in Chap-

ter 7.

6.7 Simulation Computational Performances

While the modified Syrjala tests have been shown to be more powerful than al-

ternative tests in the literature (Section 6.4), the modified Syrjala tests are more com-

putationally expensive, especially when employing both the rotational and toroidal

shift modifications. Consequently, Section 6.7.1 provides a benchmarking study

to assess the computational expense of the modified Syrjala test (which employs

0.1 proportion of points as toroidal shift origins, eight rotations, and the CWS

statistic). Section 6.7.2 details the specifications of computational resources used

at the University of Utah’s Center for High Performance Computing (CHPC, https:

//www.chpc.utah.edu/).

6.7.1 A Benchmarking Study of the Modified Syrjala Test

To provide a relative understanding of how computationally expensive the modi-

fied Syrjala test (using 0.1 proportion of points as toroidal shift origins, eight rotations,

and the CWS statistic) is on different machines, the test was applied to iterations of

https://www.chpc.utah.edu/
https://www.chpc.utah.edu/
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the null distribution of the eye-tracking inspired simulation data (see Section 6.5.9

across a series of sample sizes. Figure 54 shows the mean computational time in

minutes for ten replications (vertical axis) for the modified Syrjala test across the

following sample sizes (horizontal axis): 25, 50, 75, 100, 125, 150, 175, 200, 250, 300,

350, 400, 500, and 600. Each of these sample sizes were used for both the first and

second samples. Hence, the total number of data values used is simply two times the

horizontal axis values. Additionally, the test was applied ten times for each of the

sample sizes, except for the sample sizes 500 and 600 for Intel i5 where the test was

only applied once due to the computational cost.

While side-by-side boxplots were considered for this figure, it turned out that

the maximum standard deviation of computational times between the machines and

groups of replications was 0.117 minutes (7.02 seconds). Hence, the small variability

compared to the large range in the vertical axis made plotting boxplots less meaningful

than a simple mean for each replication group.

To prevent overplotting, the computational times from the various machines

were slightly offset horizontally. The specifications of each of the computational

environments for each of the machines displayed in Figure 54 are listed in Table 16.

Many factors are at play when timing the clock speed of the modified Syrjala test

on these different machines. Specifically, while the AMD Server consisted of nodes

with many more cores and available RAM than the Intel i7 Desktop, the computation

of the tests were run in serial (using only a single CPU core at a time). The AMD

CPUs on the (Linux) Server are also throttled down to 2.7GHz when many users

are running jobs simultaneously on the remaining cores, which is often the case.

Consequently, with a higher maximum turbo frequency of 3.90, and more available

cache memory than the Intel i5 Laptop (8MB versus 3MB, respectively), the Intel i7

Desktop demonstrated the fastest times among the three machines.
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Fig. 54: A graph of mean computational times (in minutes) for the modified Syrjala
test (using 0.1 proportion of points as toroidal shift origins, eight rotations, and the
CWS statistic) when applied to eye-tracking inspired generated data (see Section 6.5.9
on various machines.

6.7.2 Computational Resource Specifications

All of the simulation studies carried out in this dissertation (see Sections 6.2–

6.5) were computed using the University of Utah’s CHPC (https://www.chpc.utah.

edu/) resources. Table 17 provides the CHPC cluster used, the total number of

cores, the total RAM, and computational times (in minutes) for each test of in-

terest within that simulation. The section number of the simulation is also pro-

vided for direction to further details on each simulation. “OnDemand” in the clus-

ter column indicates that the Open OnDemand (https://openondemand.org/) in-

terface was used to queue jobs on the Notchpeak-shared-short nodes. The CHPC

documentation provides more details into the specifications of the computational re-

https://www.chpc.utah.edu/
https://www.chpc.utah.edu/
https://openondemand.org/
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sources (see https://www.chpc.utah.edu/documentation/guides/notchpeak.php

and https://www.chpc.utah.edu/documentation/guides/kingspeak.php).

Notice that while individual tests run faster on other machines (see Section 6.7.1),

many more tests were able to be computed simultaneously using the CHPC resources

than would have been feasible on a common personal machine.

https://www.chpc.utah.edu/documentation/guides/notchpeak.php
https://www.chpc.utah.edu/documentation/guides/kingspeak.php
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Table 16: A table of each of the computational environment specifications for each of the machines displayed in Figure 54.

Machine Label Processor Base Frequency Max Turbo Frequency Total RAM Operating System
Intel i5 Intel(R) Core(TM)

i5-7200U
2.50GHz 3.10GHz 8GB Windows 10 Enterprise

AMD AMD EPYC 7601 2.20GHz 3.20GHz 32GB CentOS Linux 3.10.0
Intel i7 Intel(R) Core(TM)

i7-1065G7
1.30GHz 3.90GHz 16GB Windows 10 Home
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Table 17: A table of each of the environment specifications and computational times
for each of the simulation studies carried out in Sections 6.2–6.5.

Section Comp. Time
Number Test Cluster Cores Total RAM (in mins)

6.2.2 Syrjala OnDemand 4 128GB 0.6
6.3.2 Rot. DWS Notchpeak 64 512GB 10.3
6.3.2 Rot. UWS Notchpeak 64 512GB 9.8
6.3.2 Rot. CWS Notchpeak 64 512GB 9.8
6.3.2 Rot. DWA Notchpeak 64 512GB 9.8
6.3.2 Rot. CWA Notchpeak 64 512GB 9.5
6.3.2 Rot. UWA Notchpeak 64 512GB 10.0
6.3.2 Toro. DWS Notchpeak 64 512GB 121.9
6.3.2 Toro. CWS Notchpeak 64 512GB 124.2
6.3.2 Toro. UWS Notchpeak 64 512GB 111.3
6.3.2 Toro. DWA Notchpeak 64 512GB 118.3
6.3.2 Toro. CWA Notchpeak 64 512GB 115.6
6.3.2 Toro. UWA Notchpeak 64 512GB 115.2
6.3.3 0.1 Toro. Rot. DWS Lonepeak 80 1TB 511.0
6.3.3 0.1 Toro. Rot. UWS Lonepeak 80 1TB 505.6
6.3.3 0.1 Toro. Rot. CWS Kingspeak 48 192GB 1002.9
6.3.3 0.2 Toro. Rot. DWS Lonepeak 80 1TB 999.3
6.3.3 0.2 Toro. Rot. UWS Lonepeak 80 1TB 994.1
6.3.3 0.2 Toro. Rot. CWS Kingspeak 48 192GB 2059.3
6.3.3 0.3 Toro. Rot. DWS Lonepeak 80 1TB 1480.9
6.3.3 0.3 Toro. Rot. UWS Lonepeak 80 1TB 1489.5
6.3.3 0.3 Toro. Rot. CWS Kingspeak 48 192GB 3087.5
6.3.4 25 Toro. Thrshld. DWS Lonepeak 80 1TB 190.0
6.3.4 25 Toro. Thrshld. UWS Lonepeak 80 1TB 187.2
6.3.4 25 Toro. Thrshld. CWS Lonepeak 80 1TB 188.6
6.4.1 Energy OnDemand 4 128GB 0.2
6.4.1 Kmmd OnDemand 4 128GB 2.2
6.4.1 FR-KS OnDemand 4 128GB 11.7
6.4.1 0.1 Toro. 8 Rot. OnDemand 4 128GB 466.8
6.5.3 0.1 Toro. 8 Rot. OnDemand 8 128GB 244.2
6.5.4 0.1 Toro. 8 Rot. OnDemand 8 128GB 243.6
6.5.5 0.1 Toro. 8 Rot. OnDemand 16 128GB 87.0
6.5.6 0.1 Toro. 8 Rot. OnDemand 8 128GB 262.8
6.5.7 0.1 Toro. 8 Rot. OnDemand 8 128GB 244.2
6.5.8 0.1 Toro. 8 Rot. OnDemand 8 128GB 247.2
6.5.9 0.1 Toro. 8 Rot. OnDemand 16 128GB 67.8
6.5.10 0.1 Toro. 8 Rot. OnDemand 16 128GB 87.6
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CHAPTER 7

Applications to the Utah State University Posture Study

An application of one of the modified Syrjala tests to the USU Posture Study

is provided within this chapter. After a brief overview in Section 7.1, Section 7.1.1

provides the analyses of group-wise comparisons within the study followed by an

example in Section 7.1.2. Section 7.1.3 details within-group comparisons, and Sec-

tion 7.1.4 provides some within-group comparison examples. Concluding remarks are

also provided in Section 7.1.5.

7.1 USU Posture Study Analyses

In answering the question, “Does judging the action capabilities of another per-

son depend on one’s own experiences?” two-sample tests of distributional difference

were applied to the USU Posture Study data (described in greater detail in Chap-

ter 4) in order to make group-wise comparisons (Section 7.1.1) as well as within-group

comparisons (Section 7.1.3).

Due to the stability of results exhibited in the simulations in Chapter 6, the

modified Syrjala test with the following test statistic properties has been applied:

(1) eight rotations of the data, (2) 0.1 proportion of the gaze points as origins of

toroidal shifts, (3) the CWS statistic. The number of permutations of the data is

99 for both the group-wise test and the pair-wise tests when conducting the within-

group comparisons. While more permutations are typically used in this scenario

in order to achieve significance in the most extreme cases even after a correction

for multiple comparisons is made, only 99 are used here due to the rich number

of significant tests discovered in some preliminary analyses of the data. Hence, the
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smallest possible p-value is 0.01 for a permutation test where the original test statistic

is more extreme than the 99 test statistics computed on permutated versions of the

data. See Section 7.1.3 for further details.

7.1.1 Group-wise Comparisons

Group-wise comparisons were made between the treatment (yoga) and control

(non-yoga) groups for all 22 postures. In other words, all of the treatment subject’s

data were aggregated and compared to all of the control subject’s data for the same

posture. However, since each subject typically spent a different amount of time view-

ing a particular posture, differing amounts of gaze points are contributed by each

subject when combining all subject data together. To resolve this issue, each sub-

ject’s contribution is given the same weight in the group-wise comparisons, rather

than allowing subjects with more contributions to go unweighted and thus have a

greater impact on the test statistic than subjects who contributed less. The hypothe-

ses for this test are as follows:

H0: The grouped distributions of the treatment and control populations which

weight each subject’s contributions equally are the same across the viewing region.

Ha: There is some unspecified difference between the treatment and control

group population distributions (which weight each subject’s contributions equally).

This weighting is accomplished by modifying the test statistic in the following

manner. Each subject’s bivariate ECDF is computed separately. The ECDFs are

grouped by treatment and control, and differences in mean ECDF values are compared

between the two groups of ECDFs. This new statistic is referred to as ξCWS
g (the
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subscript g refers to “grouped”), and can be computed as

ξCWS
g =

n2

(n1 + n2)

n1∑
i=1

[
1

K

K∑
k=1

Γ∗
1,k(x1,i, y1,i)−

1

K

K∑
k=1

Γ∗
2,k(x1,i, y1,i)

]2

+
n1

(n1 + n2)

n2∑
j=1

[
1

K

K∑
k=1

Γ∗
1,k(x2,j, y2,j)−

1

K

K∑
k=1

Γ∗
2,k(x2,j, y2,j)

]2

where there areK = 20 subjects within each group, and n1 and n2 are the total sample

sizes within each group (treatment and control, respectively). This is equivalent to

(10)

ξCWS
g =

1

20(n1 + n2)

(
n2

n1∑
i=1

[
20∑
k=1

Γ∗
1,k(x1,i, y1,i)−

20∑
k=1

Γ∗
2,k(x1,i, y1,i)

]2

+ n1

n2∑
j=1

[
20∑
k=1

Γ∗
1,k(x2,j, y2,j)−

20∑
k=1

Γ∗
2,k(x2,j, y2,j)

]2)

where k is the subject number within group i (i = 1 for the treatment group, and

i = 2 for the control group).

Alternatively, an equivalent way exists to treating each subject’s contributions

equally. This method involves computing the lowest common multiple (LCM) between

all of the gaze point contributions across all of the subjects within each group. Then

by duplicating each subject’s gaze points by the product of the missing factors the

subject’s gaze point number lacks to be equal to the LCM, each subject’s contribution

will be treated equally. However, this method is more computationally intensive than

the former. A more detailed description of this method as well as a mathematical proof

demonstrating the equivalence between the two methods is provided in Appendix A.

Hence, by using Equation 10, group-wise comparisons were made between the

treatment and control groups for each of the 22 postures. The results of the tests as

well as the computational time (wall time in hours) are displayed in Table 18. As

seen in the table, all of the 22 tests resulted in statistically significant p-values equal
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to 0.01. Hence, all the null hypotheses are rejected in favor of the alternative. The

associated conclusion is that there is some unspecified difference in the distributions

of gaze points between the treatment and control groups for every posture observed.

This implies that there is a difference between what subjects look at when assessing

postural stability between the two groups in at least one part of an actors posture.

However, this does not indicate how much similarity there is between subjects within

each group. Hence, an additional analysis was carried out in Section 7.1.3 to assess

whether there is any similarity between individual subject’s gaze point distributions

within each group.

Typically, a correction is made to account for the multiple comparisons. However,

this is omitted here due to the abundance of significant results. This is further

discussed and justified in Section 7.1.3.

Table 18 also shows the computational times (in hours) of the modified Syrjala

tests which use a threshold of 25 toroidal shifts (along with the CWS statistic, and

eight rotations) applied to the all of the posture comparisons where each groups data

was aggregated. The p-values for both of the tests in Table 18 were 0.01 except

for posture ID 6 where the threshold test achieved a p-value of 0.02 as indicated

by the asterisk. These results are included here to not only show the agreement

in the test results, but to also demonstrate the computational speed of using the

toroidal shift thresholds. When assessing the ratios of computational times between

the proportional test and the threshold test, the proportional test took on average

approximately 8.3 times longer than the threshold test. The associated standard

deviation of these ratios of computational times was approximately 1.3.

7.1.2 Group-wise Comparison Example

An example of a group-wise comparison of the aggregated gaze point distributions
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Table 18: A table of results and computational times (in hours) from applying
the modified Syrjala tests (using the CWS statistic, eight rotations, and either 0.1
proportion of toroidal shifts or a threshold of 25 toroidal shifts) to all of the postures
where each groups data was aggregated. The p-values for both of the tests were
0.01 except for posture ID 6 where the threshold test achieved a p-value of 0.02 as
indicated by the asterisk ∗. All of the computations were carried out on the University
of Utah’s Center for High Performance Computing (https://chpc.utah.edu/) on
the Notchpeak cluster using 4 cores (see AMD in Table 17) and 128GB of RAM.

Comp. Time (in hours) Comp. Time (in hours)
Posture ID n1 n2 p-values of Proportional Test of Threshold Test

1 1091 1297 0.01 2.10 0.31
2 1289 1281 0.01 2.49 0.37
3 1356 1346 0.01 2.87 0.39
4 1452 1479 0.01 3.46 0.42
5 1900 1523 0.01 5.00 0.52
6 1716 1360 0.01∗ 3.89 0.45
7 1359 1246 0.01 2.63 0.34
8 1089 1186 0.01 1.87 0.32
9 1313 1242 0.01 2.54 0.35

10 1624 1215 0.01 3.26 0.41
11 1184 1443 0.01 2.66 0.35
12 1436 1337 0.01 3.64 0.38
13 1869 1768 0.01 6.45 0.63
14 1421 1202 0.01 3.08 0.48
15 1396 1343 0.01 3.64 0.46
16 1541 1352 0.01 3.97 0.42
17 1661 1508 0.01 4.80 0.59
18 1746 1367 0.01 4.88 0.46
19 1126 1108 0.01 2.34 0.32
20 1348 1374 0.01 3.53 0.37
21 1476 1597 0.01 4.33 0.44
22 1501 1517 0.01 4.04 0.43

https://chpc.utah.edu/
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for Posture ID 2 is shown in Figure 55. The test results, which employed the ξCWS
g

statistic detailed in Equation 10, were significant (p-value = 0.01) for this comparison.

Some of the differences in the aggregated gaze point distributions can be seen in the

control group’s (right image in Figure 55) emphasis on the top of the head and left

arm, and the treatment group’s (left image in Figure 55) emphasis on the left side of

the torso, right hand, and left foot.

Fig. 55: Scatterplots of the gaze points for treatment (left) and control (right) groups
for posture ID 2. The test result was significant (p-value = 0.01) for this comparison.

7.1.3 Within-group Comparisons

Furthermore, within-group comparisons were made to determine whether the

viewing patterns in a group would be similar. Specifically, each of the 20 subjects

within a group were compared to all of the other subjects within that group. Hence,
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for each posture there are
(
20
2

)
= 190 comparisons within each subject group (treat-

ment or control). Overall, 190 comparisons × 22 postures × 2 groups = 8,360 indi-

vidual comparisons.

With so many statistical tests being conducted, it is highly likely that the results

will produce significant p-values when in fact the null hypothesis (that there is no

difference) is true. This is well known within the broader statistical community as the

multiple comparisons problem (Miller, 1981). Depending on the type of error measure

that is desired to be controlled, a variety of methods have been proposed to account

for the few false alarms that arise just by chance, e.g., Bonferroni (1936) proposed

a widely used conservative p-value adjustment which controls the family-wise error

rate (FWER). Given a set of m independent comparisons, the FWER is defined as

αFWER = 1− (1− αper comparison)
m.

Another commonly used, yet slightly less conservative method for controlling the

FWER was proposed by Šidák (1967).

However, for large-scale multiple testing within exploratory studies, controlling

the false-discovery rate (FDR) is often preferred over the FWER. The FDR is loosely

defined as the expected number of false positives among all of the significant tests.

Benjamini and Hochberg (1995) developed a sequential or step-down approach for

controlling the FDR. Additionally, Storey (2003) defined a modified version of the

FDR, called the positive-FDR (pFDR), and proposed a method for controlling the

pFDR by converting p-values into Bayesian posterior p-values called q-values.

Nonetheless, these multiple testing correction methods are of most use when there

are only a handful of significant results among many tests with some of the significant

tests being due to chance error. By applying the multiple testing correction, the
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error rate of interest can be controlled, and some of the significant results due to

multiple testing can be attributed to random variation. However, in the case where

an overwhelming majority or all of the test results are significant, a multiple testing

correction method becomes less informative due to the effect size overshadowing the

chance variation.

For example, suppose we want to conduct 100 independent two-sample t-tests for

a difference in means between two populations at the 5% significance level. Even if the

two populations are identical, and the effect size (or difference in population means)

is zero, we would expect to see roughly five significant tests due to chance variation.

However, if the two population distributions have little overlap due to considerably

different means and small variances, then the effect size would be overwhelmingly

large (compared to the chance variation), and a majority or all of the tests would be

significant. In this latter case, the conclusion from the 100 independent tests that the

two populations have different means would hold regardless of any kind of multiple

correction method being applied.

Such is the case with many of the tests conducted in the USU Posture Study.

Figures 56–57 show strongly positively skewed histograms of p-values for both the

treatment and control group pairwise tests, respectively. Additionally, out of the

4,180 individual tests within each group, only 35 were non-significant within the

treatment group, and only 54 were non-significant in the control group. Hence, ap-

proximately 99.16% and 98.71% of the pairwise tests were significant in the treatment

and control groups, respectively. Furthermore, the largest non-significant p-values

within the treatment and control groups are only 0.25 and 0.37, respectively, and

many of the remaining non-significant p-values tend to be close to the significance

level of 0.05. Due to the richness of significant tests within the respective groups,

even if the usual application of a multiple testing correction method is conducted,
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the results will be essentially the same, and a conclusion is made that the subjects

within each respective group exhibit mostly heterogeneous gaze point patterns. The

non-significant test results for the treatment and control groups are listed in Tables 19

and 20, respectively.
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Fig. 56: A frequency histogram of p-values for the 4,180 pairwise modified Sryjala
tests across all of the subjects within the USU Posture Study treatment group. The
vertical red line at 0.05 indicates the significance level of the tests.
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Fig. 57: A frequency histogram of p-values for the 4,180 pairwise modified Sryjala
tests across all of the subjects within the USU Posture Study control group. The
vertical red line at 0.05 indicates the significance level of the tests.
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Table 19: All 35 non-significant results from the modified Syrjala test applied to
all subject comparisons within the treatment group of the USU Posture Study. The
remaining 4,145 tests for the treatment group yielded significant results with p-values
of 0.05 or less. All computations were carried out on the University of Utah’s Cen-
ter for High Performance Computing (https://chpc.utah.edu/) on the Notchpeak
cluster using 4 cores (see AMD in Table 17) and 128GB of RAM.

Comp. Time
Subject 1 ID Subject 2 ID Posture ID n1 n2 p-values (in secs)

1 15 19 32 29 0.08 0.20
2 14 10 56 77 0.08 1.07
2 18 10 56 94 0.13 1.53
3 5 1 41 49 0.08 0.55
3 20 2 53 135 0.23 2.90
3 7 8 56 39 0.12 0.51
4 10 19 21 28 0.07 0.15
4 18 19 21 49 0.08 0.26
5 9 2 42 39 0.11 0.34
5 18 3 46 28 0.10 0.27
5 10 9 45 26 0.10 0.28
5 11 17 56 71 0.07 1.00
5 10 19 57 28 0.06 0.67
5 13 21 44 32 0.10 0.52
6 7 17 82 36 0.06 0.79
7 20 9 63 94 0.19 1.77
7 8 15 56 57 0.10 1.25
7 17 17 36 60 0.10 0.53
7 18 17 36 53 0.11 0.70
8 12 19 72 49 0.15 0.87
8 17 19 72 56 0.07 1.01
9 17 11 80 30 0.10 0.68
9 12 19 51 49 0.25 0.56
9 13 21 53 32 0.06 0.40
11 12 9 44 77 0.25 0.90
11 13 9 44 30 0.08 0.35
11 12 10 61 76 0.06 1.33
11 18 21 43 62 0.13 0.67
12 13 9 77 30 0.06 0.68
13 17 21 32 53 0.06 0.42
14 18 10 77 94 0.20 2.05
15 20 3 23 85 0.08 1.36
15 18 17 35 53 0.06 0.42
16 18 1 49 37 0.06 0.53
17 20 15 43 128 0.09 2.07

https://chpc.utah.edu/
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Table 20: All 54 non-significant results from the modified Syrjala test applied to
all subject comparisons within the control group of the USU Posture Study. The
remaining 4,126 tests for the control group yielded significant results with p-values of
0.05 or less. All computations were carried out on the University of Utah’s Center for
High Performance Computing (https://chpc.utah.edu/) on the Notchpeak cluster
using 4 cores (see AMD in Table 17) and 128GB of RAM.

Comp. Time
Subject 1 ID Subject 2 ID Posture ID n1 n2 p-values (in secs)

1 8 16 31 49 0.06 0.33
1 10 16 31 55 0.17 0.41
1 14 16 31 55 0.07 0.69
1 16 16 31 63 0.08 0.46
2 16 13 127 46 0.14 2.23
2 4 16 114 40 0.06 1.56
2 7 21 104 40 0.06 1.32
4 15 9 34 71 0.06 0.68
4 7 21 46 40 0.07 0.44
5 11 9 49 58 0.06 0.70
5 7 21 84 40 0.09 0.87
6 7 3 47 28 0.10 0.33
6 7 19 48 39 0.08 0.41
6 8 19 48 21 0.07 0.26
6 14 22 51 103 0.08 1.59
7 16 3 28 70 0.06 0.56
7 13 10 40 19 0.07 0.20
7 17 15 28 157 0.24 2.68
7 16 19 39 45 0.08 0.37
7 15 21 40 70 0.07 0.71
8 9 14 36 60 0.06 0.58
8 13 14 36 71 0.10 0.69
8 18 14 36 58 0.10 0.49
8 15 15 43 63 0.08 0.71
8 9 16 49 64 0.16 0.77
8 12 16 49 51 0.18 0.93
8 14 16 49 55 0.37 0.61
8 20 16 49 88 0.26 1.22
8 11 19 21 31 0.14 0.15
8 12 19 21 21 0.08 0.10
9 16 1 59 54 0.06 1.02
9 20 1 59 74 0.09 1.99
9 19 3 34 57 0.06 0.42
9 12 4 61 23 0.07 0.34
9 10 6 59 40 0.06 0.52
9 13 14 60 71 0.11 1.12
9 14 16 64 55 0.35 0.86
9 18 21 60 63 0.11 0.91

10 14 16 55 55 0.08 0.71
10 16 16 55 63 0.06 0.88
10 19 19 39 43 0.08 0.59
11 12 8 40 42 0.06 0.35
11 14 9 58 43 0.08 0.59
11 15 20 44 58 0.08 0.59
12 16 2 56 34 0.06 0.74
12 18 14 22 58 0.23 0.37
12 20 16 51 88 0.06 1.26
13 15 19 55 49 0.07 0.62
14 17 9 43 107 0.20 1.56
14 16 13 56 46 0.12 0.59
15 16 19 49 45 0.06 0.63
16 20 9 50 87 0.22 1.30
16 20 17 35 179 0.06 3.34
17 20 9 107 87 0.06 3.08

https://chpc.utah.edu/
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7.1.4 Within-group Comparison Examples

Sections 7.1.1 and 7.1.2 revealed an overwhelming majority of comparisons be-

tween subjects in the USU Posture Study were statistically significant. In this section,

a closer look is made at a series of subject gaze point scatterplots. The results of the

respective tests are justified using connections to the previous simulations studies

detailed in Sections 6.5.3–6.5.10. Furthermore, these connections to previous sim-

ulations which generated data inspired by eye-tracking scenarios demonstrates the

utility of the modified Syrjala tests in eye-tracking data analyses. Within each of the

treatment and control groups test results, one comparison was randomly selected from

the set of significant results and one from the non-significant results (four in total).

Table 21 provides the details of the randomly chosen tests. For each comparison, the

gaze point scatterplots are displayed in Figures 58–61.

Table 21: Four randomly chosen test results (one significant and one non-significant
from the treatment and control groups, respectively) along with their respective
sample sizes and computational times (in seconds). All computations were car-
ried out on the University of Utah’s Center for High Performance Computing
(https://chpc.utah.edu/) on the Notchpeak cluster using 4 cores (see AMD in
Table 17) and 128GB of RAM.

Comp. Time
Group Subj. 1 ID Subj. 2 ID Post. ID n1 n2 p-values (in secs)

Treatment 8 18 20 56 53 0.01 0.67
Control 3 4 22 61 44 0.01 0.67
Treatment 9 17 11 80 30 0.10 0.68
Control 8 12 19 21 21 0.08 0.10

Figure 58 compares the gaze point scatterplots for subject ID 8 (left) and subject

ID 18 (right) within the treatment group for posture ID 20. The sample sizes were

roughly similar (56 and 53, respectively), and the test result was significant (p-value

= 0.01) for this comparison. Hence, the conclusion drawn from the test is there is

https://chpc.utah.edu/
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some unspecified difference in the gaze point distributions of these two subjects. In-

deed, while both subjects spent time gathering visual information about the postural

stability of the actor by looking at the right bicep, subject ID 8 focused on the crown

/ right shoulder, right forearm / left thigh, and right foot, whereas subject ID 18

looked at the left side of the head, core, between the legs, and left foot more.

Fig. 58: Scatterplots of the gaze points for subject ID 8 (left) and subject ID 18
(right) within the treatment group for posture ID 20. The test result was significant
(p-value = 0.01) for this comparison.

These differences are similar to several of the simulations carried out in Sec-

tion 6.5. Particularly, the difference in where subjects looked at the head resembles

a shift in bivariate mean of the clusters as studied in Section 6.5.3. The difference

between right forearm and core also resembles a small difference in bivariate means.

Hence, while the test is relatively robust against some of the noise seen around the
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right foot of subject ID 18 (simulated in Section 6.5.7), there is enough difference

between subject scatterplots to conclude a significant difference.

Furthermore, while 35 (out of 4,180) tests were non-significant for all of the

pairwise comparisons between subjects within the treatment group, none of the re-

maining comparisons between subjects for Posture ID 20 (such as the comparison

in Figure 58) were non-significant. Hence, all of the treatment subject’s gaze point

distributions exhibited some level of significant difference from all of the remaining

distributions for Posture ID 20. The test results for Posture ID 20, along with the

other overwhelming majority of significant test results, contribute to the conclusion of

general heterogeneity among subjects within the treatment and control groups. This

also implies that there simply may not be enough of an impact that practicing yoga

actively for at least two times a week for at least three months may have on human

subject’s visual behavior when assessing postural stability.

Similarly, Figure 59 compares the gaze point scatterplots for subject ID 3 (left)

and subject ID 4 (right) within the control group for posture ID 22. The sample

sizes were 61 and 44, respectively. The test result was significant (p-value = 0.01)

for this comparison. Hence, the conclusion drawn from the test is there is some

unspecified difference in the gaze point distributions of these two subjects. This

is visually confirmed by the gaze point clusters in the left subplot around the left

forearm, inside of the right thigh, and between the feet, as compared to the clusters

in the right subplot around the upper torso, right waist, and outside of the right

thigh.

Several comparisons can be made between differences seen in Figure 59 and

the simulated differences in Sections 6.5.3–6.5.10. For example, the shift of visual

attention from the upper torso (right subplot) to the left forearm (left subplot) shows

a change in the center and shape of the fixation distribution even more dramatic than
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the shifts in bivariate mean coordinates or variance-covariance structure simulated in

Sections 6.5.3–6.5.4. Hence, it is no surprise that these two subject’s gaze point

distributions resulted in a highly significant p-value.

Fig. 59: Scatterplots of the gaze points for subject ID 3 (left) and subject ID 4 (right)
within the control group for posture ID 22. The test result was significant (p-value
= 0.01) for this comparison.

However, in rare instances, some of the subjects exhibited similarities in their

gaze point scatterplots. For example, Figure 60 compares the gaze point scatterplots

for subject ID 9 (left) and subject ID 17 (right) within the treatment group for posture

ID 11. The test result was non-significant (p-value = 0.10) for this comparison. Hence,

the null hypothesis cannot be rejected. There is not enough evidence to conclude that

these subjects have different gaze point distributions.



181

Fig. 60: Scatterplots of the gaze points for subject ID 9 (left) and subject ID 17 (right)
within the treatment group for posture ID 11. The test result was non-significant (p-
value = 0.10) for this comparison.

Initially, it may seem that this conclusion is counter-intuitive given the visual

emphases made by the dark clusters in subject ID 9’s scatterplot as compared to

the lighter sparse clusters made by subject ID 17. However, notice that the sample

sizes are relatively different. Subject ID 9 contributed 80 gaze points while subject

ID 17 contributed only 30. While the test has been shown to be relatively robust to

differences in sample sizes, the step sizes in bivariate cumulative distribution functions

are smaller for large sample sizes and vice versa. Consequently, only a few gaze points

are needed in posture ID 11’s scatterplot near the locations of clusters in posture ID

9’s scatterplot in order for the distribution functions to overlap and create small

differences in the final statistic. Hence, this is a good example for emphasizing that
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differences in sample sizes must be taken into consideration when visually comparing

differences and similarities between the two gaze point scatterplots. This is confirmed

by the simulations conducted in Section 6.5.10 where many non-significant test results

are observed between two subject’s simulated data which exhibit similar clusters

across widely varying sample sizes. For example, there are many cases where one

sample size is 25 and the other sample size is 100, and most of the test results are

non-significant even for moderately different proportions of the sample sizes being

allocated to different simulated fixation clusters.

Additionally, the data for a non-significant test result (p-value = 0.08) can be

seen in Figure 61. Here, the gaze point scatterplots for subject ID 8 (left) and subject

ID 12 (right) within the control group are compared for posture ID 19. The sample

sizes were 21 for both of the subjects.

The conclusion drawn from this test is there is not enough evidence to conclude

that these subjects have different gaze point distributions. Indeed, both subject’s

concentrated briefly on the right hand, stomach, and right knee. While the clusters

around the stomach seem to exhibit slight differences in center and shape, simula-

tions of varying cluster covariance structures in Section 6.5.4 indicate that the test

is relatively tolerant of these changes, especially for small sample sizes. Additionally,

the differences in these two clusters at the stomach are minimalized when considered

as a part of the overall mixture distributions which form the entire gaze point distri-

butions (see Sections 6.5.9 and 6.5.10). The two points between the feet in the right

subject’s scatterplot can be considered as outliers, which the test has demonstrated

robustness against within the simulation carried out in Sections 6.5.6–6.5.8.

7.1.5 Conclusions from the USU Posture Study Analyses

In this chapter, the modified Syrjala test (which employs eight rotations, 0.1
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Fig. 61: Scatterplots of the gaze points for subject ID 8 (left) and subject ID 12
(right) within the control group for posture ID 19. The test result was non-significant
(p-value = 0.08) for this comparison.

proportion of toroidal shifts, and the CWS statistic) was used to make group-wise and

within-group comparisons of the treatment and control subject gaze point data within

the USU Posture Study. For the group-wise comparisons, an additional modification

to the test (see Equation 10) enabled the comparisons to be made while treating each

subject’s contributions equally within their respective groups.

However, all of the group-wise test results are statistically significant. Further-

more, overwhelming majorities of the within-group tests for each group are also sta-

tistically significant. Specifically, approximately 99.16% and 98.71% of the pairwise

tests were significant in the treatment and control groups, respectively. Due to the

richness of significant tests within the respective groups, the usual application of a
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multiple testing correction method is omitted, and a conclusion is made that the sub-

jects within each respective group exhibit mostly heterogeneous gaze point patterns.

There are likely many reasons behind why so many significant differences were

found between subject gaze distributions even within the treatment and control

groups. Some of the likely sources of added gaze point variability could be the lack of

precision in the ETMOBILE (http://www.argusscience.com/ETMobile.html) eye-

tracking device, the algorithm (Li, 2017) which maps the gaze points from individual

video frames to a master image, differences in subject eye physiology and presenta-

tion, and natural variation between human subjects. While a respectable piece of

research equipment in its own time, the ETMOBILE (http://www.argusscience.

com/ETMobile.html) eye-tracking device captures eye movement using only the sub-

ject’s right eye, while other more modern eye trackers record both eyes and employ

multiple forward facing cameras for additional gaze point location prediction accu-

racy. Additionally, eyeliner and mascara make-up along with contacts and certain

types of glasses have been shown to negatively impact eye tracking device algorithms

(Duchowski, 2007). Furthermore, during some of the preliminary data analyses of

the subject data, many of the initial and final calibration gaze point distributions

were shown to be noisy enough to conclude significant differences were present even

though the subjects seemed to have focused their visual attention on the same four

dots as instructed. Additional research should be conducted in each of these areas of

additional variation to rule out any confounding effects.

http://www.argusscience.com/ETMobile.html
http://www.argusscience.com/ETMobile.html
http://www.argusscience.com/ETMobile.html
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CHAPTER 8

The distdiffR R Package

8.1 Overview

This chapter overviews the distdiffR package for the R computational environ-

ment (R Core Team, 2019), which was created to aid in distribution, reproducibility

of results, and the ability to extend the functionality of the software through open-

source availability. The package is publicly available on GitHub (https://github.

com/EricMcKinney77/distdiffR).

Section 8.2 provides the vignette taken from the package which details the usage

and functionality of the package. Documentation for all of the functions provided by

the package is found in Section 8.3. While the package was developed using R version

4.1.1, the package only requires R version 3.5.0 or greater to be installed. To install

the distdiffR package from GitHub the user has to install the devtools package (if

not already installed), and then the user has to run the install github() function

in an R console as follows:

if (!require(devtools)) install.packages("devtools")

devtools::install_github("https://github.com/EricMcKinney77/distdiffR")

library(distdiffR)

8.2 Vignette for the distdiffR R Package

https://github.com/EricMcKinney77/distdiffR
https://github.com/EricMcKinney77/distdiffR


The distdiffR vignette

Eric McKinney

2022-04-14

Overview
distdiffR is an R package for bivariate two-sample tests of distributional equality.

The package provides a collection of nonparametric permutation tests for distributional equality. The tests
make use of statistics between empirical cumulative distribution functions averaged across a series of rotations
and / or toroidal shifts of the pooled samples. The variety of tests with their respective parameters can be
called from the main function distdiffr(). It takes as input two bivariate samples (not necessarily the
same size) in the form of two-column matrices.

Application (when no difference exists)
Below is an example using Anderson’s Iris data1 to show test results when the null hypotheses are true (and
both distributions are equivalent). This is done by randomly assigning all three of the species of within the
Iris data to two samples. Since distdiffr() employs bivariate tests of distributional equality, only the first
two independent variables from the Iris data are used.
library(distdiffR)

seedNum <- 123
set.seed(seedNum)

data(iris)
# Randomly assign all three species to two samples
irisPermuted <- iris[sample.int(nrow(iris)), ]
sample1 <- as.matrix(irisPermuted[1:75, 1:2])
sample2 <- as.matrix(irisPermuted[76:150, 1:2])
pooled_data <- rbind(cbind(sample1, 1), cbind(sample2, 2))

plot(pooled_data[, 1],
pooled_data[, 2],
xlim = c(4, 8),
ylim = c(1, 5),
col = c("#1b9e77cc", "#e7298acc")[pooled_data[, 3]],
pch = c(2, 1)[pooled_data[, 3]],
pty = "s",
xlab = "Sepal Length",
ylab = "Sepal Width")

legend(7, 2.2,
legend = c("Sample 1", "Sample 2"),
pch = c(2, 1),
col = c("#1b9e77cc", "#e7298acc"))

1Fisher, R. A., 1936. The use of multiple measurements in taxonomic problems. Annals of Eugenics, 7, Part II, pp. 179–188.
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# Rotational test
output <- distdiffr(sample1, # Note: Data inputs must be matrices

sample2,
testType = "rotational",
numRot = 8, # Default value
seedNum = seedNum)

output$pval

#> [1] 0.58

When testType = "rotational", McKinney and Symanzik’s rotational modified Syrjala test2 is being
employed. Since the p-value (output$pval) is much larger than any acceptable significance level, the null
hypothesis is not rejected, and the conclusion is made that these two samples have been drawn from the
same distribution.

Although simulations have suggested that the default number of rotations of eight (every 45 degrees) is
sufficient, a different number may be passed to the numRot argument. For example, 48 rotations divides the
statistic into a computation once every 7.5 degrees.
# Rotational test with 50 rotations
output <- distdiffr(sample1, # Note: Data inputs must be matrices

sample2,
testType = "rotational",
numRot = 48,
seedNum = seedNum)

output$pval

2McKinney, E., Symanzik, J., 2019. Modifications of the Syrjala Test for Testing Spatial Distribution Differences Between
Two Populations, In: 2019 JSM Proceedings. American Statistical Association, Alexandria, VA. pp. 2518–2530.
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#> [1] 0.566

Furthermore, while the default number of permutations (numPerms) is 999, a different number of permutations
within any testType may be specified.
# Rotational test
output <- distdiffr(sample1, # Note: Data inputs must be matrices

sample2,
testType = "rotational",
numRot = 8, # Default value
numPerms = 9999,
seedNum = seedNum)

output$pval

#> [1] 0.5966

Test modifications

Similar results are also shown for the more powerful toroidal and combined (rotational and toroidal) modified
Syrjala tests3:
# Toroidal shift test with proportions of points
output <- distdiffr(sample1,

sample2,
testType = "toroidal",
propPnts = 0.1,
seedNum = seedNum)

#> [1] "Using propPnts instead of default shiftThrshld."
output$pval

#> [1] 0.449
# Toroidal shift test with a threshold below pooled sample size
output <- distdiffr(sample1,

sample2,
testType = "toroidal",
shiftThrshld = 25, # Default
seedNum = seedNum)

output$pval

#> [1] 0.5
# Toroidal shift test with a threshold above pooled sample size
output <- distdiffr(sample1,

sample2,
testType = "toroidal",
shiftThrshld = 200,
seedNum = seedNum)

#> Warning in distdiffr(sample1, sample2, testType = "toroidal", shiftThrshld = 200, :
#> n_pooled is smaller than shiftThrshld. Can only compute n_pooled toroidal shifts.
output$pval

#> [1] 0.526
3McKinney, E., Symanzik, J., 2021. Extensions to the Syrjala Test with Eye-Tracking Analysis Applications, In: 2021 JSM

Proceedings. American Statistical Association, Alexandria, VA. pp. 853–889.
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# Toroidal shift test with a number of shifts
output <- distdiffr(sample1,

sample2,
testType = "toroidal",
numShifts = 8,
seedNum = seedNum)

#> Warning in distdiffr(sample1, sample2, testType = "toroidal", numShifts = 8, :
#> Using numShifts instead of default shiftThrshld.
output$pval

#> [1] 0.531

When employing the test which uses the combined rotational and toroidal shift modifications (which is the
default argument for testType) the default behavior of the test is to use the 999 permutations, the CWS
statistic (explained in more detail later in this vignette), eight rotations, and threshold the number of toroidal
shifts to 25. If the combined sample size is less than the threshold, then the test will compute one toroidal
shift per point (for each rotation). This is the default behavior when no other parameters are passed to the
distdiffr() function other than the required sample matrices.
# Combined rotational and toroidal shift test
output <- distdiffr(sample1,

sample2,
testType = "combined", # Default
numRot = 8, # Default
shiftThrshld = 25, # Default
numPerms = 999, # Default
psiFun = CalcPsiCWS, # Default
seedNum = seedNum)

output$pval

#> [1] 0.331
# Same as above
output <- distdiffr(sample1,

sample2,
seedNum = seedNum)

output$pval

#> [1] 0.331

Alternatively, a proportion of the combined sample size may be specified for the test to determine the number
of toroidal shifts (similar to the non-rotational toroidal shift test). If the proportion times the combined
sample size is not an integer, the ceiling is taken to specify the number of toroidal shifts per rotation. Here,
the proportion 0.1 multiplied to the combined sample size of 150 will result in 15 toroidal shifts per rotation.
This will override the default behavior to use the shiftThrshld argument to limit the number of toroidal
shifts.
# Combined rotational and toroidal shift test
output <- distdiffr(sample1,

sample2,
testType = "combined", # Default
numRot = 8, # Default
propPnts = 0.1,
seedNum = seedNum)

#> [1] "Using propPnts instead of default shiftThrshld."
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output$pval

#> [1] 0.321

Or, a specific number of toroidal shifts my be passed to numShifts. This will also override the default
behavior to use the shiftThrshld argument to limit the number of toroidal shifts.
# Combined rotational and toroidal shift test
output <- distdiffr(sample1,

sample2,
testType = "combined", # Default
numRot = 8, # Default
numShifts = 10,
seedNum = seedNum)

#> Warning in distdiffr(sample1, sample2, testType = "combined", numRot = 8, :
#> Using numShifts instead of default shiftThrshld.
output$pval

#> [1] 0.336

However, the number of toroidal shifts must be less than the combined sample size.
# Error: number of shifts larger than the combined sample sizes!
output <- distdiffr(sample1,

sample2,
testType = "combined", # Default
numRot = 8, # Default
numShifts = 151,
seedNum = seedNum)

#> Warning in distdiffr(sample1, sample2, testType = "combined", numRot = 8, :
#> Using numShifts instead of default shiftThrshld.

#> Error in distdiffr(sample1, sample2, testType = "combined", numRot = 8, :
#> n_pooled is smaller than shiftThrshld. Can only compute n_pooled toroidal shifts.

Also, distdiffr() will not allow arguments to be passed to more than one of propPnts or numShifts.
# Error: Must provide either propPnts or numShifts, but not both.
output <- distdiffr(sample1,

sample2,
testType = "combined", # Default
numRot = 8, # Default
propPnts = 0.1,
numShifts = 10,
seedNum = seedNum)

#> Error in distdiffr(sample1, sample2, testType = "combined", numRot = 8, :
#> Must provide either propPnts or numShifts, but not both.

Specifying a different number of rotations may also be combined with the above options for toroidal shifts.
output <- distdiffr(sample1,

sample2,
testType = "combined",
numRot = 10,
shiftThrshld = 25,
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seedNum = seedNum)
output$pval

#> [1] 0.532
output <- distdiffr(sample1,

sample2,
testType = "combined",
numRot = 10,
propPnts = 0.1,
seedNum = seedNum)

#> [1] "Using propPnts instead of default shiftThrshld."
output$pval

#> [1] 0.548
output <- distdiffr(sample1,

sample2,
testType = "combined",
numRot = 10,
numShifts = 10,
seedNum = seedNum)

#> Warning in distdiffr(sample1, sample2, testType = "combined", numRot = 10, :
#> Using numShifts instead of default shiftThrshld.
output$pval

#> [1] 0.479

Alternative test statistics

Six alternative statistics are available for each of the previously discussed types of tests (rotational, toroidal,
or combined). The six statistics can be accessed by passing one of CalcPsiDWS, CalcPsiUWS, CalcPsiCWS,
CalcPsiDWA, CalcPsiUWA, or CalcPsiCWA to the psiFun argument. The abbreviations DWS, UWS, CWS,
DWA, UWA, and CWA refer to the different computations taking place on the differences between the
two sample’s bivariate empirical cumulative distribution functions. The DW, UW, and CW mean that the
differences are being double weighted, uniformly weighted, or complimentary weighted, respectively, and the
appended S and A refer to the squared exponent or absolute value being applied to the differences. More
details can be found in Section 5.1 of McKinney (2022)4. The default statistic is CWS. However, as seen here,
the choice among these statistics has been shown to make little difference on the test results5. Consequently,
the p-values within the S or A series are identical for the same random number seed.
output <- distdiffr(sample1,

sample2,
testType = "combined",
psiFun = CalcPsiDWS,
seedNum = seedNum)

output$psiStat

#> [1] 0.3131213
4McKinney, E., 2022. Extensions to the Syrjala Test with Eye-Tracking Data Analysis Applications in R. Ph.D. dissertation,

Department of Mathematics and Statistics, Utah State University (Forthcoming)
5McKinney, E., Symanzik, J., 2021. Extensions to the Syrjala Test with Eye-Tracking Analysis Applications, In: 2021 JSM

Proceedings. American Statistical Association, Alexandria, VA. pp. 853–889.
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output$pval

#> [1] 0.331
output <- distdiffr(sample1,

sample2,
testType = "combined",
psiFun = CalcPsiUWS,
seedNum = seedNum)

output$psiStat

#> [1] 0.6262427
output$pval

#> [1] 0.331
output <- distdiffr(sample1,

sample2,
testType = "combined",
psiFun = CalcPsiCWS, # Default
seedNum = seedNum)

output$psiStat

#> [1] 0.3131213
output$pval

#> [1] 0.331
output <- distdiffr(sample1,

sample2,
testType = "combined",
psiFun = CalcPsiDWA,
seedNum = seedNum)

output$psiStat

#> [1] 3.7387
output$pval

#> [1] 0.333
output <- distdiffr(sample1,

sample2,
testType = "combined",
psiFun = CalcPsiUWA,
seedNum = seedNum)

output$psiStat

#> [1] 7.4774
output$pval

#> [1] 0.333
output <- distdiffr(sample1,

sample2,
testType = "combined",
psiFun = CalcPsiCWA,
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seedNum = seedNum)
output$psiStat

#> [1] 3.7387
output$pval

#> [1] 0.333

Input order does not matter

Additionally, for any of the above tests, the data input order is arbitrary, e.g.,
output1 <- distdiffr(sample1,

sample2,
seedNum = seedNum)

output2 <- distdiffr(sample2,
sample1,
seedNum = seedNum)

output1$pval == output2$pval

#> [1] TRUE

Application (when a difference exists)
The following examples demonstrate test results when the null hypothesis is false (i.e., there exists some
difference between the two distributions). This is shown by separating the two samples by the species Setosa
and Virginica, respectively.
data(iris)
sample1 <- as.matrix(iris[iris[5] == "setosa", -(3:5)])
sample2 <- as.matrix(iris[iris[5] == "virginica", -(3:5)])
pooled_data <- rbind(cbind(sample1, 1), cbind(sample2, 2))

plot(pooled_data[, 1],
pooled_data[, 2],
xlim = c(4, 8),
ylim = c(1, 5),
col = c("#7570b3cc", "#d95f02cc")[pooled_data[, 3]],
pch = c(2, 1)[pooled_data[, 3]],
pty = "s",
xlab = "Sepal Length",
ylab = "Sepal Width")

legend(6.6, 2.2,
legend = c("Sample 1 (Setosa)", "Sample 2 (Virginica)"),
pch = c(2, 1),
col = c("#7570b3cc", "#d95f02cc"))
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Indeed, the difference between the two samples results in minimal p-values among all of the test types.
# Rotational test
output <- distdiffr(sample1,

sample2,
testType = "rotational",
seedNum = seedNum)

output$pval

#> [1] 0.001
# Toroidal shift test with proportions of points
output <- distdiffr(sample1,

sample2,
testType = "toroidal",
propPnts = 0.1,
seedNum = seedNum)

#> [1] "Using propPnts instead of default shiftThrshld."
output$pval

#> [1] 0.001
# Toroidal shift test with thresholds below pooled sample size
output <- distdiffr(sample1,

sample2,
testType = "toroidal",
shiftThrshld = 25, # Default
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seedNum = seedNum)
output$pval

#> [1] 0.001
# Toroidal shift test with thresholds above pooled sample size
output <- distdiffr(sample1,

sample2,
testType = "toroidal",
shiftThrshld = 200,
seedNum = seedNum)

#> Warning in distdiffr(sample1, sample2, testType = "toroidal", shiftThrshld = 200, :
#> n_pooled is smaller than shiftThrshld. Can only compute n_pooled toroidal shifts.
output$pval

#> [1] 0.001
# Toroidal shift test with a number of shifts
output <- distdiffr(sample1,

sample2,
testType = "toroidal",
numShifts = 8,
seedNum = seedNum)

#> Warning in distdiffr(sample1, sample2, testType = "toroidal", numShifts = 8, :
#> Using numShifts instead of default shiftThrshld.
output$pval

#> [1] 0.001

Again, the default test type is the combined rotational and toroidal shift test, with eight rotations and
a threshold of 25 toroidal shifts as default values. These default settings are usually adequate to obtain
meaningful results for both cases of when the null hypothesis is true (equal distributions) and when the null
hypothesis is false (unequal distributions).
# Combined rotational and toroidal shift test
output <- distdiffr(sample1,

sample2,
testType = "combined", # Default
numRot = 8, # Default
shiftThrshld = 25, # Default
seedNum = seedNum)

output$pval

#> [1] 0.001

The grouped_distdiffr() test
Another version of the test also exists when combining bivariate data from multiple sources (e.g., subjects)
into each of the two-samples, respectively. This test treats each subject’s contribution equally. It can be
called via the grouped_distdiffr() function. The plot below labels the species Setosa, Virsicolor, and
Virginica as the integers 1, 2, and 3, respectively. Since the species is treated as a subject labeling, then each
subject’s contributions to the respective samples can be grouped and weighted such that each contribution is
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treated equally. Section 7.1.1 of McKinney (2022)6 describes the underlying mathematics in greater detail.
# Randomly assign all three species to two samples
iris$Species <- rep(1:3, each = 50)
irisPermuted <- iris[sample.int(nrow(iris)), ]
sample1 <- as.matrix(irisPermuted[1:75, c(1:2, 5)])
sample2 <- as.matrix(irisPermuted[76:150, c(1:2, 5)])
pooled_data <- rbind(cbind(sample1, 1), cbind(sample2, 2))

plot(pooled_data[, 1],
pooled_data[, 2],
xlim = c(4, 8),
ylim = c(1, 5),
col = c("#1b9e77cc", "#e7298acc")[pooled_data[, 4]],
pch = c("1", "2", "3")[pooled_data[, 3]],
pty = "s",
xlab = "Sepal Length",
ylab = "Sepal Width")

legend(6.4, 2.2,
legend = c("Setosa", "Virsicolor", "Virginica", "Sample 1", "Sample 2"),
pch = c(49, 50, 51, 15, 15),
col = c("black", "black", "black", "#1b9e77cc", "#e7298acc"),
ncol = 2)
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6McKinney, E., 2022. Extensions to the Syrjala Test with Eye-Tracking Data Analysis Applications in R. Ph.D. dissertation,
Department of Mathematics and Statistics, Utah State University (Forthcoming)
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table(sample1[, "Species"])

#>
#> 1 2 3
#> 28 23 24
table(sample2[, "Species"])

#>
#> 1 2 3
#> 22 27 26

For example, although sample1 has 28 Setosas, 23 Virsicolors, and 24 Virginicas, the contributions of each
to the overall test statistic will be weighted equally. This is also true of sample2 which has 22 Setosas, 27
Virsicolors, and 26 Virginicas as seen in the above table outputs.
output <- grouped_distdiffr(sample1,

sample2,
seedNum = seedNum)

output$pval

#> [1] 0.268
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8.3 Documentation for the distdiffR R Package

This section provides the documentation for all of the functions within the

distdiffR package.
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bcdf Construct and evaluate a bivariate empirical cumulative distribution
function

Description

Construct a bivariate empirical cumulative distribution function (BECDF) using data and pass each
of the eval points through the BECDF.

Usage

bcdf(data, eval)

Arguments

data A two column matrix for constructing the BECDF

eval A two column matrix for input into the BECDF

Value

A numeric vector of output values from the BECDF

Examples

data(iris)
sample1 <- as.matrix(iris[iris$Species == "virginica", 1:2])
sample2 <- as.matrix(iris[iris$Species == "versicolor", 1:2])

bcdf(sample1, sample2)

CalcGroupPsiCWS The Psi CWS statistic for aggregated group data

Description

This statistic computes the complementary weighted squared (CWS) differences between the aver-
aged subject empirical cumulative distribution functions for the two samples. For more information,
see McKinney (2022) and McKinney and Symanzik (2021).

Usage

CalcGroupPsiCWS(data, groups, subjects)
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Arguments

data A two column matrix of the bivariate pooled samples

groups A numeric vector of sample (or group) labels (use either 1 or 2)

subjects A numeric vector of subject labels

Value

The Psi CWS statistic for aggregated group data

References

McKinney E (2022). Extensions to the Syrjala Test with Eye-Tracking Data Analysis Applications
in R. Ph.D. dissertation, Department of Mathematics and Statistics, Utah State University. (Forth-
coming).

McKinney E, Symanzik J (2021). “Extensions to the Syrjala Test with Eye-Tracking Analysis
Applications.” In 2021 JSM Proceedings., 853–889. American Statistical Association, Alexandria,
VA.

Examples

# Randomly assign all three species to two samples
data(iris)
iris$Species <- rep(1:3, each = 50) # Species will serve as the subject label
irisPermuted <- iris[sample.int(nrow(iris)), ]
sample1 <- as.matrix(irisPermuted[1:75, c(1:2, 5)])
sample2 <- as.matrix(irisPermuted[76:150, c(1:2, 5)])
pooled_data <- rbind(cbind(sample1, 1), cbind(sample2, 2))

CalcGroupPsiCWS(pooled_data[, 1:2], pooled_data[, 4], pooled_data[, 3])

CalcPsiCWA The Psi CWA Statistic

Description

This statistic computes the complementary weighted absolute (CWA) differences between the em-
pirical cumulative distribution functions for the two samples. For more information, see McKinney
(2022) and McKinney and Symanzik (2021).

Usage

CalcPsiCWA(data, subjects)

Arguments

data A two column matrix of the bivariate pooled samples

subjects A numerical vector of sample labels (use either 1 or 2)

Value

the Psi CWA statistic
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References

McKinney E (2022). Extensions to the Syrjala Test with Eye-Tracking Data Analysis Applications
in R. Ph.D. dissertation, Department of Mathematics and Statistics, Utah State University. (Forth-
coming).

McKinney E, Symanzik J (2021). “Extensions to the Syrjala Test with Eye-Tracking Analysis
Applications.” In 2021 JSM Proceedings., 853–889. American Statistical Association, Alexandria,
VA.

Examples

data(iris)
pooled_data <- iris[iris$Species %in% c("setosa", "virginica"), 1:2]
sample_labels <- rep(1:2, c(sum(iris$Species == "setosa"),

sum(iris$Species == "virginica")))

CalcPsiCWA(as.matrix(pooled_data), sample_labels)

CalcPsiCWS The Psi CWS Statistic

Description

This statistic computes the complementary weighted squared (CWS) differences between the em-
pirical cumulative distribution functions for the two samples. For more information, see McKinney
(2022) and McKinney and Symanzik (2021).

Usage

CalcPsiCWS(data, subjects)

Arguments

data A two column matrix of the bivariate pooled samples

subjects A numerical vector of sample labels (use either 1 or 2)

Value

The Psi CWS statistic

References

McKinney E (2022). Extensions to the Syrjala Test with Eye-Tracking Data Analysis Applications
in R. Ph.D. dissertation, Department of Mathematics and Statistics, Utah State University. (Forth-
coming).

McKinney E, Symanzik J (2021). “Extensions to the Syrjala Test with Eye-Tracking Analysis
Applications.” In 2021 JSM Proceedings., 853–889. American Statistical Association, Alexandria,
VA.
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Examples

data(iris)
pooled_data <- iris[iris$Species %in% c("setosa", "virginica"), 1:2]
sample_labels <- rep(1:2, c(sum(iris$Species == "setosa"),

sum(iris$Species == "virginica")))

CalcPsiCWS(as.matrix(pooled_data), sample_labels)

CalcPsiDWA The Psi DWA Statistic

Description

This statistic computes the double weighted absolute (DWA) differences between the empirical
cumulative distribution functions for the two samples. For more information, see McKinney (2022)
and McKinney and Symanzik (2021).

Usage

CalcPsiDWA(data, subjects)

Arguments

data A two column matrix of the bivariate pooled samples

subjects A numerical vector of sample labels (use either 1 or 2)

Value

The Psi DWA statistic

References

McKinney E (2022). Extensions to the Syrjala Test with Eye-Tracking Data Analysis Applications
in R. Ph.D. dissertation, Department of Mathematics and Statistics, Utah State University. (Forth-
coming).

McKinney E, Symanzik J (2021). “Extensions to the Syrjala Test with Eye-Tracking Analysis
Applications.” In 2021 JSM Proceedings., 853–889. American Statistical Association, Alexandria,
VA.

Examples

data(iris)
pooled_data <- iris[iris$Species %in% c("setosa", "virginica"), 1:2]
sample_labels <- rep(1:2, c(sum(iris$Species == "setosa"),

sum(iris$Species == "virginica")))

CalcPsiDWA(as.matrix(pooled_data), sample_labels)
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CalcPsiDWS The Psi DWS Statistic

Description

This statistic computes the double weighted squared (DWS) differences between the empirical cu-
mulative distribution functions for the two samples. For more information, see McKinney (2022)
and McKinney and Symanzik (2021).

Usage

CalcPsiDWS(data, subjects)

Arguments

data A two column matrix of the bivariate pooled samples

subjects A numerical vector of sample labels (use either 1 or 2)

Value

The Psi DWS statistic

References

McKinney E (2022). Extensions to the Syrjala Test with Eye-Tracking Data Analysis Applications
in R. Ph.D. dissertation, Department of Mathematics and Statistics, Utah State University. (Forth-
coming).

McKinney E, Symanzik J (2021). “Extensions to the Syrjala Test with Eye-Tracking Analysis
Applications.” In 2021 JSM Proceedings., 853–889. American Statistical Association, Alexandria,
VA.

Examples

data(iris)
pooled_data <- iris[iris$Species %in% c("setosa", "virginica"), 1:2]
sample_labels <- rep(1:2, c(sum(iris$Species == "setosa"),

sum(iris$Species == "virginica")))

CalcPsiDWS(as.matrix(pooled_data), sample_labels)

CalcPsiUWA The Psi UWA Statistic

Description

This statistic computes the uniformly weighted absolute (UWA) differences between the empirical
cumulative distribution functions for the two samples. For more information, see McKinney (2022)
and McKinney and Symanzik (2021).
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Usage

CalcPsiUWA(data, subjects)

Arguments

data A two column matrix of the bivariate pooled samples

subjects A numerical vector of sample labels (use either 1 or 2)

Value

The Psi UWA statistic

References

McKinney E (2022). Extensions to the Syrjala Test with Eye-Tracking Data Analysis Applications
in R. Ph.D. dissertation, Department of Mathematics and Statistics, Utah State University. (Forth-
coming).

McKinney E, Symanzik J (2021). “Extensions to the Syrjala Test with Eye-Tracking Analysis
Applications.” In 2021 JSM Proceedings., 853–889. American Statistical Association, Alexandria,
VA.

Examples

data(iris)
pooled_data <- iris[iris$Species %in% c("setosa", "virginica"), 1:2]
sample_labels <- rep(1:2, c(sum(iris$Species == "setosa"),

sum(iris$Species == "virginica")))

CalcPsiUWA(as.matrix(pooled_data), sample_labels)

CalcPsiUWS The Psi UWS Statistic

Description

This statistic computes the uniformly weighted squared (UWS) differences between the empirical
cumulative distribution functions for the two samples. For more information, see McKinney (2022)
and McKinney and Symanzik (2021).

Usage

CalcPsiUWS(data, subjects)

Arguments

data A two column matrix of the bivariate pooled samples

subjects A numerical vector of sample labels (use either 1 or 2)

Value

The Psi UWS statistic
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References

McKinney E (2022). Extensions to the Syrjala Test with Eye-Tracking Data Analysis Applications
in R. Ph.D. dissertation, Department of Mathematics and Statistics, Utah State University. (Forth-
coming).

McKinney E, Symanzik J (2021). “Extensions to the Syrjala Test with Eye-Tracking Analysis
Applications.” In 2021 JSM Proceedings., 853–889. American Statistical Association, Alexandria,
VA.

Examples

data(iris)
pooled_data <- iris[iris$Species %in% c("setosa", "virginica"), 1:2]
sample_labels <- rep(1:2, c(sum(iris$Species == "setosa"),

sum(iris$Species == "virginica")))

CalcPsiUWS(as.matrix(pooled_data), sample_labels)

distdiffr The distdiffR two-sample tests of bivariate distributional equality

Description

The distdiffr() function conducts two-sample permutation tests of distributional equality based
on differences in the bivariate empirical cumulative density functions (BECDFs). The differences
in BECDFs are computed across a series of rotations, toroidal shifts, or both rotations and toroidal
shifts of the combined data (specified via testType). The number of rotations and toroidal shifts
may be specified (via numRot or numShifts, respectively). The number of toroidal shifts may also
be determined by a proportion of the combined sample size (via propPnts). However, McKinney
(2022) has shown that limiting the number of toroidal shifts to ease the computational load of the
test will still provide stable results. Simulations have shown the combined rotational and toroidal
shift test to be the most powerful yet appropriately conservative test. For more information, see
McKinney (2022) and McKinney and Symanzik (2021).

Usage

distdiffr(
data1,
data2,
testType = "combined",
numRot = 8,
propPnts = NULL,
numShifts = NULL,
shiftThrshld = 25,
numPerms = 999,
psiFun = CalcPsiCWS,
seedNum = NULL

)
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Arguments

data1 A two column matrix of bivariate observations from one sample.

data2 A two column matrix of bivariate observations from another sample.

testType A string indicating the type of test to be used. Must be one of c("rotational",
"toroidal", "combined").

numRot An integer number of rotational shifts of the pooled samples.

propPnts A numeric proportion of points to be used as toroidal shift origins. Cannot
provide both propPnts and numShifts. If neither are provided, shiftThrshld is
used.

numShifts A numeric integer. The number of points to be used as toroidal shift origins.
Must be less than the pooled sample size. Cannot provide both propPnts and
numShifts. If neither are provided, shiftThrshld is used.

shiftThrshld A numeric integer. Used if neither propPnts or numShifts are provided. If the
pooled sample size is less than shiftThrshld, every point will be used as a toroidal
shift origin. Otherwise, only a random sample of shiftThrshld points will be
used.

numPerms An integer number of permutations of the original data.

psiFun A function specifying the Psi statistic calculation.

seedNum An integer random seed value.

Value

A list including three objects: (1) the Psi statistic computed on the original data (2) a vector of Psi
statistics computed on the permuted data (3) the p-value for the test

References

McKinney E (2022). Extensions to the Syrjala Test with Eye-Tracking Data Analysis Applications
in R. Ph.D. dissertation, Department of Mathematics and Statistics, Utah State University. (Forth-
coming).

McKinney E, Symanzik J (2021). “Extensions to the Syrjala Test with Eye-Tracking Analysis
Applications.” In 2021 JSM Proceedings., 853–889. American Statistical Association, Alexandria,
VA.

Examples

# Randomly assign all three species to two samples
seedNum <- 123
set.seed(seedNum)

data(iris)
# Randomly assign all three species to two samples
irisPermuted <- iris[sample.int(nrow(iris)), ]
sample1 <- as.matrix(irisPermuted[1:75, 1:2])
sample2 <- as.matrix(irisPermuted[76:150, 1:2])
pooled_data <- rbind(cbind(sample1, 1), cbind(sample2, 2))

# Rotational test
output <- distdiffr(sample1, # Note: Data inputs must be matrices

sample2,
testType = "rotational",
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numRot = 8, # Default value
seedNum = seedNum)

output$pval

# Toroidal shift test with proportions of points
output <- distdiffr(sample1,

sample2,
testType = "toroidal",
propPnts = 0.1,
seedNum = seedNum)

output$pval

# Toroidal shift test with a threshold below pooled sample size
output <- distdiffr(sample1,

sample2,
testType = "toroidal",
shiftThrshld = 25, # Default
seedNum = seedNum)

output$pval

# Toroidal shift test with a threshold above pooled sample size
output <- distdiffr(sample1,

sample2,
testType = "toroidal",
shiftThrshld = 200,
seedNum = seedNum)

output$pval

# Toroidal shift test with a number of shifts
output <- distdiffr(sample1,

sample2,
testType = "toroidal",
numShifts = 8,
seedNum = seedNum)

output$pval

# Combined rotational and toroidal shift test
output <- distdiffr(sample1,

sample2,
testType = "combined", # Default
numRot = 8, # Default
shiftThrshld = 25, # Default
seedNum = seedNum)

output$pval

# Also see browseVignettes(package = "distdiffR")

grouped_distdiffr The combined rotational and toroidal shift distdiffR test for aggregated
group data

Description

The grouped_distdiffr() function conducts two-sample permutation tests of distributional equal-
ity based on differences in the bivariate empirical cumulative density functions (BECDFs). The
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differences in BECDFs are computed across a series of rotations, toroidal shifts, or both rotations
and toroidal shifts of the combined data (specified via testType). The number of rotations and
toroidal shifts may be specified (via numRot or numShifts, respectively). The number of toroidal
shifts may also be determined by a proportion of the combined sample size (via propPnts).

Usage

grouped_distdiffr(
aggdata1,
aggdata2,
numRot = 8,
propPnts = NULL,
numShifts = NULL,
shiftThrshld = 25,
numPerms = 999,
psiFun = CalcGroupPsiCWS,
seedNum = NULL

)

Arguments

aggdata1 A three column matrix of bivariate observations from one sample with the third
column being the numeric subject labels

aggdata2 A three column matrix of bivariate observations from another sample with the
third column being the numeric subject labels

numRot An integer number of rotational shifts of the pooled samples

propPnts A numeric proportion of points to be used as toroidal shift origins. Cannot
provide both propPnts and numShifts. If neither are provided, shiftThrshld is
used.

numShifts A numeric integer. The number of points to be used as toroidal shift origins.
Must be less than the pooled sample size. Cannot provide both propPnts and
numShifts. If neither are provided, shiftThrshld is used.

shiftThrshld A numeric integer. Used if neither propPnts or numShifts are provided. If the
pooled sample size is less than shiftThrshld, every point will be used as a toroidal
shift origin. Otherwise, only a random sample of shiftThrshld points will be
used.

numPerms An integer number of permutations of the original data

psiFun A function specifying the Psi statistic calculation. Default is the CalcGroupP-
siCWS.

seedNum An integer random seed value

Details

Additionally, grouped_distdiffr() assumes multiple sources (subjects) are contributing to each
sample. As such, the function weights each sources contribution as to treat each equally within the
samples, respectively. However, this test is only currently available with the grouped CWS statistic
and employs both rotational and toroidal shifts. For more information, see McKinney (2022) and
McKinney and Symanzik (2021).
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Value

A list including three objects: (1) the Psi statistic computed on the original data (2) a vector of Psi
statistics computed on the permuted data (3) the p-value for the test

References

McKinney E (2022). Extensions to the Syrjala Test with Eye-Tracking Data Analysis Applications
in R. Ph.D. dissertation, Department of Mathematics and Statistics, Utah State University. (Forth-
coming).

McKinney E, Symanzik J (2021). “Extensions to the Syrjala Test with Eye-Tracking Analysis
Applications.” In 2021 JSM Proceedings., 853–889. American Statistical Association, Alexandria,
VA.

Examples

# Randomly assign all three species to two samples
# The species serve as subject labels within each sample
seedNum <- 123
set.seed(seedNum)

data(iris)
irisPermuted <- iris
irisPermuted$Species <- rep(1:3, each = 50)
irisPermuted <- irisPermuted[sample.int(nrow(irisPermuted)), ]
sample1 <- as.matrix(irisPermuted[1:75, c(1:2, 5)])
sample2 <- as.matrix(irisPermuted[76:150, c(1:2, 5)])

output <- grouped_distdiffr(sample1,
sample2,
seedNum = seedNum)

output$pval

hashMat Assigns a hash value to a two-column matrix.

Description

The hashMat() function assigns hash numbers to the two-column sample matrices for the purpose
of providing identical test results regardless of the order in which the input data is passed to the
distdiffr() or grouped_distdiffr() functions.

Usage

hashMat(mat)

Arguments

mat A two column matrix of bivariate observations.

Value

A numeric hash value
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Examples

data(iris)
sample1 <- as.matrix(iris[iris$Species == "virginica", 1:2])
sample2 <- as.matrix(iris[iris$Species == "versicolor", 1:2])

hashMat(sample1)
hashMat(sample2)

NumToroShiftData Apply a toroidal shift to the pooled samples using a number of points

Description

The NumToroShiftData() function produces a list of toroidal shifted versions of the two-column
input matrix. The number of toroidal shifts is an integer passed to numShifts. The origins of the
toroidal shifts are randomly selected from the combined samples. The pooled data is assumed to
list all of the first sample of size n1 before the second sample (of size n2).

Usage

NumToroShiftData(data, n1, n2, numShifts)

Arguments

data A two column matrix of the pooled samples

n1 An integer sample size for the first sample

n2 An integer sample size for the second sample

numShifts A numeric number of points to be used as toroidal shift origins

Value

A list of toroidal shifted pooled sample matrices

Examples

data(iris)
sample1 <- as.matrix(iris[iris$Species == "setosa", 1:2])
sample2 <- as.matrix(iris[iris$Species == "virginica", 1:2])
pooled_data <- rbind(sample1, sample2)
n1 <- nrow(sample1)
n2 <- nrow(sample2)

# Create a list of five toroidal shifts of the pooled data
output <- NumToroShiftData(pooled_data, n1, n2, 25)
summary(output)
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PropToroShiftData Apply a toroidal shift to the pooled samples using a proportion of
points

Description

The PropToroShiftData() function produces a list of toroidal shifted versions of the two-column
input matrix. The number of toroidal shifts is (the ceiling of) the proportion (propPnts) multiplied
by the combined sample size. The origins of the toroidal shifts are randomly selected from the
combined samples. The pooled data is assumed to list all of the first sample of size n1 before the
second sample (of size n2).

Usage

PropToroShiftData(data, n1, n2, propPnts = 1)

Arguments

data A two column matrix of the pooled samples

n1 An integer sample size for the first sample

n2 An integer sample size for the second sample

propPnts A numeric proportion of points to be used as toroidal shift origins

Value

A list of toroidal shifted pooled sample matrices

Examples

data(iris)
sample1 <- as.matrix(iris[iris$Species == "setosa", 1:2])
sample2 <- as.matrix(iris[iris$Species == "virginica", 1:2])
pooled_data <- rbind(sample1, sample2)
n1 <- nrow(sample1)
n2 <- nrow(sample2)

# Creates a list of 0.1 times (n1 + n2) = 10 toroidal shifts of the pooled data
output <- PropToroShiftData(pooled_data, n1, n2, 0.1)
summary(output)

RotateData Create rotated versions of the data

Description

This function produces a list of rotated versions of the two-column input matrix. Specifically,
the number of rotations (i.e., an integer passed to numRotations) divides a complete circle into
numRotations equal angles, and numRotations rotated versions of the input data are output in a
list.
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Usage

RotateData(data, numRotations)

Arguments

data A two column matrix of the bivariate combined samples

numRotations A non-negative integer specifying the number of rotations to be applied to the
data within 360 degrees.

Value

A list of matrices containing the coordinates for each version of the rotated data (including the
original data, which is the first matrix of the list)

Examples

data(iris)
sample1 <- as.matrix(iris[iris$Species == "setosa", 1:2])

# Generate five rotated versions of sample1 (every 72 degrees) within 360 degrees.
RotateData(sample1, 5)
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CHAPTER 9

Discussion and Future Work

This chapter provides a conclusion to this dissertation by discussing the main

insights of the research (in Section 9.1) in addition to providing directions for future

work (in Section 9.2).

9.1 Concluding Discussion

This dissertation introduced a series of new two-sample tests of distributional

equality. The new tests are a generalization of the Syrjala (1996) test and make

use of both rotations and toroidal shifts of the data. The new tests also remove the

requirement for identical sampling locations between the two samples as assumed

in the original Syrjala test. While the inclusion of rotations of the data is more of

a generalization to the original four rotations of the data in the Syrjala test (see

Section 5.2 for additional details), the inclusion of toroidal shifts within the test, and

combination of toroidal shifts within rotations, are novel extensions (see Sections 5.3

and 5.4). Furthermore, a version of the test was developed to treat each subject’s

contribution equally within the respective pooled samples (see Section 7.1.1 for more

details).

From the series of simulations that have been discussed throughout Sections 6.2–

6.5, the following conclusions can be made:

� The Syrjala (1996) test has been shown to depend upon data aggregation tech-

niques such as regular and random binning. It is recommended to use another

bivariate two sample test of distributional equality which does not assume iden-

tical sampling locations. Such tests include the Energy test by Székely and
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Rizzo (2004), the kernel maximum mean discrepancy by Gretton et al. (2012),

the Friedman and Rafsky (1979) generalization to the Kolmogorov (1933) test,

or one of the modified Syrjala tests proposed in this dissertation.

� The modified Syrjala tests have been shown to be insensitive to differences in

the weightings of the tests statistics, and only a marginal gain in power was

found when using squared differences in the ECDFs as compared to absolute

differences. Additionally, all of the tests were shown to produce relatively stable

results regardless of the number of rotations or toroidal shifts explored within

the simulations.

� While the modified Syrjala tests which employ toroidal shifts achieve roughly

the same power as the tests which employ both rotational and toroidal shifts, the

latter tests achieve an average false positive rate (0.03 vs. 0.045, respectively)

closer to the significance level (0.05). Thus, the combined modifications produce

conservative tests which are more powerful in the face of all departures from the

null than the tests which employ toroidal shifts alone. However, this balance

comes at the cost of increased computational complexity.

� The modified Syrjala tests which use eight rotations, 0.1 proportion of points as

origins for toroidal shifts, and the CWS statistic has been shown by simulation

to achieve a higher number of significant tests (when the null is false) than

several other competing methods including the Energy test by Székely and Rizzo

(2004), the kernel maximum mean discrepancy by Gretton et al. (2012), the

Friedman and Rafsky (1979) generalization to the Kolmogorov (1933) test, and

the original Syrjala (1996) test (when preliminary data binning is employed).

� The modified Syrjala test which uses a threshold of 25 randomly chosen points

from the pooled sample as origins for toroidal shifts (see Section 6.3.4) achieves
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comparable results as the tests which employ proportions of points as origins

for toroidal shifts (see Section 6.3.3). This provides motivation to a default

threshold value for the tests in the R package (see Chapter 8). These default

values guide new users of the package toward parameter values for tests which

compute reasonably fast (e.g., on the order of seconds for sample sizes less than

100, and on the order of minutes for sample sizes less than 500).

� The modified Syrjala tests have been shown to be well suited to certain types of

eye-tracking data by simulation. Specifically, the versions of the test which use

the CWS statistic, eight rotations, and either 0.1 proportion of toroidal shifts or

a threshold of 25 toroidal shifts have been shown to be robust against a small

number of outliers (see Sections 6.5.6, 6.5.7, 6.5.8, and 6.5.9). Additionally,

these versions of the test can detect a variety of differences between samples,

including differences in gaze point cluster centers (Sections 6.5.3 and 6.5.9),

cluster shapes (Sections 6.5.4 and 6.5.9), proportions allocated to different ob-

jects being viewed by subjects (Sections 6.5.5 and 6.5.10), and proportions of

noise (Sections 6.5.7, 6.5.8 and 6.5.9)

The test which employs the CWS statistic, eight rotations, and 0.1 proportions of

toroidal shifts has also been applied to a new study in eye-tracking and postural sta-

bility assessment, called the Utah State University (USU) Posture Study (Symanzik

et al., 2017, 2018; Studenka et al., 2020; Coltrin et al., 2020; McKinney and Symanzik,

2019, 2021). The setup, data collection, and data preprocessing of the USU Posture

Study has been provided (Chapter 4). While additional analyses should be conducted,

the study results in this dissertation suggest that there is a detectable difference be-

tween the treatment and control groups captured in the subject’s eye-tracking data.
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The new tests, called the modified Syrjala tests, have been made available via

the distdiffR package for the R software environment for statistical computing and

graphics. The distdiffR package can be downloaded from https://github.com/

EricMcKinney77/distdiffR.

9.2 Future Work

In additional to the methods and results provided within this dissertation, addi-

tional areas of research have been discovered. These areas of future work are listed

below.

� Application of the modified Syrjala test to previous studies where the Syrjala

test has been applied for comparative purposes.

� Further refine the distdiffR algorithms and associated code for computational

efficiency.

� Extend the methodology of the modified Syrjala tests to apply to higher dimen-

sions of data beyond the bivariate case.

� Apply the methodology of the modified Syrjala tests in the setting of unsuper-

vised learning.

� Analyze and fuse the other collected data with the eye-tracking data within the

USU Posture Study.

https://github.com/EricMcKinney77/distdiffR
https://github.com/EricMcKinney77/distdiffR
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APPENDIX A

Mathematical Proofs

This appendix provides the mathematical proofs of theorems and other mathe-

matical properties stated in the main chapters of this dissertation. Theorem A.1.1,

Corrolary A.1.1, and Theorem A.1.2 are well known and provided here to give fur-

ther detail to the discussed material in Section 2.1. However, Theorem A.2.1 along

with its associated proof is novel, and is provided to show equivalency between two

approaches for treating each subject’s contributions equally within the group-wise

tests in the analysis of the Utah State University Posture Study data (provided in

Section 7.1.1).

A.1 Mathematical Proofs

Theorem A.1.1. The empirical cumulative distribution function (ECDF) is an un-

biased estimator of cumulative distribution function (CDF).

Proof. For n independent and identically distributed random variables,X1, X2, . . . , Xn,

let S(x) and F (x) be the ECDF and CDF, respectively. By definition, the ECDF can

be written as S(x) = 1
n

∑n
i=1 1Xi≤x, where i = 1, . . . , n. The function 1Xi≤x is one if

Xi ≤ x, and zero otherwise. 1Xi≤x is also commonly known as the indicator function

(Rice, 2006).

Notice for a fixed value x, the indicator function 1Xi≤x = 1 with probability

p = F (x). Hence, the indicator function is a Bernoulli random variable (Rice, 2006)
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with a parameter p. If we multiply S(x) by n, then

nS(x) = n
1

n

n∑
i=1

1Xi≤x

=
n∑

i=1

1Xi≤x.

This implies that nS(x) is a binomial random variable (Rice, 2006) with a mean of

nF (x) and variance of nF (x)(1−F (x)). Now observe that the expected value of the

ECDF can be written as

E[S(x)] =
n

n
E[S(x)] =

1

n
E[nS(x)] =

1

n
(nF (x)) = F (x).

This implies that S(x) is an unbiased estimator of F (x). ■

Corollary A.1.1. As a corollary to Theorem A.1.1, the variance of S(x) can also be

derived as
F (x)(1− F (x))

n
.

Proof. For n independent and identically distributed random variables,X1, X2, . . . , Xn,

let S(x) and F (x) be the ECDF and CDF, respectively. Since nS(x) is a binomial

random variable (Rice, 2006) with a mean of nF (x) and variance of nF (x)(1−F (x)),

then

var(S(x)) =
n2

n2
var(S(x)) =

1

n2
var(nS(x)) =

1

n2
(nF (x)(1−F (x))) =

F (x)(1− F (x))

n
.

■

Theorem A.1.2. The ECDF is a consistent estimator of the CDF.

Proof. Let X1, X2, . . . , Xn be n independent and identically distributed random vari-

ables with S(x) and F (x) as the ECDF and CDF, respectively.
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By definition, we need to show that for any arbitrarily small ϵ > 0,

P [|S(x)− F (x)| ≥ ϵ] → 0, as n → ∞.

By Chebyshev’s inequality (Rice, 2006) we have

P [|S(x)− F (x)| ≥ ϵ] ≤ var(S(x))

ϵ2
.

Since var(S(x)) = F (x)(1−F (x))
n

(see Corrolary A.1.1), then

var(S(x))

ϵ2
=

F (x)(1−F (x))
n

ϵ2

=
F (x)(1− F (x))

nϵ2
.

Hence, P [|S(x) − F (x)| ≥ ϵ] ≤ F (x)(1− F (x))

nϵ2
→ 0 as n → ∞ for any ϵ > 0.

Therefore, S(x) is a consistent estimator of F (x).

■

A.2 Methods and Proof for Treating Each Subject’s Contributions Equally

When computing the differences in ECDFs between the treatment and control

groups, a difficulty arises in that each subject contributed a differing amount of gaze

points depending on how long they observed the posture of interest. However, their

contributions to a group-wise test need to be treated equally. Hence, two methods

are proposed in Section 7.1.1 for treating each subject’s contributions equally when

conducting a between-group test. The methods are detailed here along with a proof

of their equivalence.
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Method 1: Consider all K subject’s number of gaze point contributions when ag-

gregating all group-wise gaze points. Since each subject’s number of gaze points,

n1, n2, . . . , nK , is an integer, then there exists a lowest common multiple (LCM) be-

tween them, say L. Hence, there exists an ai ∈ I for each ni such that niai = L. If

we duplicate each subject’s gaze points by a factor of ai, then each subject will have

contributed an equal number of L gaze points. From here, all of the K times L gaze

points can be aggregated into a group sample, and an ECDF constructed, say Γc.

Method 2: Let Γi be the ECDFs for each of the subject’s data within one group.

An average ECDF value, ΓAV E can be computed as ΓAV E(x, y) =
1
K

∑K
i=1 Γi(x, y).

Theorem A.2.1. Γc (as defined above in Method 1) is equal to ΓAV E (as defined

above in Method 2).

Proof. Let X̃i = [(xi,1, yi,1), (xi,2, yi,2) . . . , (xi,ni
, yi,ni

)], i = 1, 2, . . . , K, be bivariate

sample vectors from our K subjects, each with sample size n1, n2, . . . , nK , respec-

tively. Now, let L be the LCM of n1, n2, . . . , nK . Then each n1, n2, . . . , nK has an

a1, a2, . . . , aK ∈ I, such that niai = L. (Hence, ai are the product of missing factors

which must be multiplied to ni in order to equal L.)

Now duplicate each bivariate element of X̃i = [(xi,1, yi,1), (xi,2, yi,2) . . . , (xi,ni
, yi,ni

)] =

[(xi,ji , yi,ji)]
ni
ji=1 by ai. Call these new samples, X̃∗

i such that

X̃∗
i = [(xi,1,1, yi,1,1), . . . , (xi,1,ai , yi,1,ai),

(xi,2,1, yi,2,1), . . . , (xi,2,ai , yi,2,ai),

(xi,ni,1, yi,ni,1) . . . , (xi,ni,ai , yi,ni,ai)].

Also, let ki = 1, . . . , ai. (Note, all of the X̃
∗
i will now have an equal number of niai = L

elements.) Combine all of the X̃∗
i samples into one large sample X̃∗. (X̃∗ will have

K∑
i=1

aini =
K∑
i=1

L = KL elements.)
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From here we can construct an ECDF for X̃∗, called Γ∗
c , where

Γ∗
c(x, y) =

1

KL

K∑
i=1

ni∑
ji=1

ai∑
ki=1

Ixi,ji,ki
≤x,yi,ji,ki≤y.

Alternatively, we can construct an average ECDF value across all of the indi-

vidual ECDFs, Γi, for the original (non-duplicated) subject data, say ΓAV E, such

that

ΓAV E(x, y) =
1

K

K∑
i=1

Γi(x, y).

Our goal is to show that ΓAV E(x, y) = Γ∗
c(x, y).

Notice that,

ΓAV E(x, y) =
1

K

K∑
i=1

Γi(x, y)

=
1

K
[Γ1(x, y) + Γ2(x, y) + . . .+ ΓK(x, y)]

=
1

K

[
1

n1

n1∑
j1=1

Ix1,j1
≤x,y1,j1≤y +

1

n2

n2∑
j2=1

Ix1,j2
≤x,y1,j2≤y + . . .+

1

nK

nK∑
jK=1

Ix1,jK
≤x,y1,jK≤y

]

=
1

K

[
a1
a1n1

n1∑
j1=1

Ix1,j1
≤x,y1,j1≤y+

a2
a2n2

n2∑
j2=1

Ix1,j2
≤x,y1,j2≤y + . . .+

aK
aKnK

nK∑
jK=1

Ix1,jK
≤x,y1,jK≤y

]

=
1

K

[
1

a1n1

n1∑
j1=1

a1Ix1,j1
≤x,y1,j1≤y+

1

a2n2

n2∑
j2=1

a2Ix1,j2
≤x,y1,j2≤y + . . .+

1

aKnK

nK∑
jK=1

aKIx1,jK
≤x,y1,jK≤y

]
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=
1

K

[
1

a1n1

n1∑
j1=1

a1∑
k1=1

Ix1,j1,k1
≤x,y1,j1,k1≤y+

1

a2n2

n2∑
j2=1

a2∑
k2=1

Ix2,j2,k2
≤x,y2,j2,k2≤y + . . .+

1

aKnK

nk∑
jK=1

aK∑
kK=1

IxK,jK,kK
≤x,yK,jK,kK

≤y

]
(∗)

=
1

K

[
1

L

n1∑
j1=1

a1∑
k1=1

Ix1,j1,k1
≤x,y1,j1,k1≤y+

1

L

n2∑
j2=1

a2∑
k2=1

Ix2,j2,k2
≤x,y2,j2,k2≤y + . . .+

1

L

nk∑
jK=1

aK∑
kK=1

IxK,jK,kK
≤x,yK,jK,kK

≤y

]

=
1

KL

[
n1∑

j1=1

a1∑
k1=1

Ix1,j1,k1
≤x,y1,j1,k1≤y+

n2∑
j2=1

a2∑
k2=1

Ix2,j2,k2
≤x,y2,j2,k2≤y + . . .+

nk∑
jK=1

aK∑
kK=1

IxK,jK,kK
≤x,yK,jK,kK

≤y

]

=
1

KL

K∑
i=1

ni∑
ji=1

ai∑
ki=1

Ixi,ji,ki
≤x,yi,ji,ki≤y

= Γ∗
c(x, y)

Note: the step (∗) holds because∑ni

ji=1 aiIx1,ji
≤x,y1,ji≤y =

∑ni

ji=1

∑ai
ki=1 Ixi,ji,ki

≤x,yi,ji,ki≤y

(i.e., multiplying each of the indicator functions by ai has an equivalent effect as du-

plicating the subject’s data). ■
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APPENDIX B

Additional Simulation Results

Since Figures 18 and 62–66 show almost the same rotational modified test behav-

ior aside from some chance variation (in Section 6.3.1), the latter figures (Figures 62–

66) for the DWS, UWS, DWA, UWA, and CWA simulations (respectively) are pro-

vided in this appendix. Similarly, Figures 67–71 show almost the same toroidal shift

modified test behavior aside from some chance variation as Figure 19 in Section 6.3.2.

Hence, Figures 67–71 are also provided in this appendix. Also, Figures 20–22 in Sec-

tion 6.3.4 are patterned closely to Figures 72–77, and Figure 23 in Section 6.3.4 is

patterned closely to Figures 78 and 79. Hence, Figures 72–79 are also provided in

this appendix. For similar reasons, additional simulation results which do not differ

dramatically from those in Sections 6.5.3 and 6.5.9 are provided here as Figures 80–89

Definitions for the test statistic abbreviations in these plots can be found in

Section 5.1. Additionally, explanations of the graph features in Figures 62–89 can be

found in Section 6.3.
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Fig. 62: A grid of line graphs showing the results of a simulation comparing multiple rotations of the modified Syrjala
test using double weightings of the squared differences in the ECDFs (DWS). The grid column name indicates the CSR
sample size (n1), and the grid row indicates the shape of the second sample. The colors of the lines and symbols indicate
the second sample size (approximate n2). For example, the bottom left graph shows the number of significant test results
(out of ten tests) on CSR realizations of 50 points with Right realizations of approximately 50, 100, 250, and 500 points.
Note that the spaces between horizontal tick marks are only approximately represented.



227

[...] [...] [...] [...] [...] [...] [...] [...]

n1 = 50 n1 = 100 n1 = 250 n1 = 500

C
S

R
C

enter
R

epel
C

orner
R

ight

4 5 6 8 10 36 45 4 5 6 8 10 36 45 4 5 6 8 10 36 45 4 5 6 8 10 36 45

0

5

10

0

5

10

0

5

10

0

5

10

0

5

10

Number of Rotations (for UWS Rotational Modified Syrjala Test)

S
ig

ni
fic

an
t T

es
ts

n2 ≈ 50 100 250 500

Fig. 63: A grid of line graphs showing the results of a simulation comparing multiple rotations of the modified Syrjala test
using unweighted squared differences in the ECDFs (UWS). The grid column name indicates the CSR sample size (n1),
and the grid row indicates the shape of the second sample. The colors of the lines and symbols indicate the second sample
size (approximate n2). For example, the bottom left graph shows the number of significant test results (out of ten tests)
on CSR realizations of 50 points with Right realizations of approximately 50, 100, 250, and 500 points. Note that the
spaces between horizontal tick marks are only approximately represented.
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Fig. 64: A grid of line graphs showing the results of a simulation comparing multiple rotations of the modified Syrjala
test using double weightings of the absolute differences in the ECDFs (DWA). The grid column name indicates the CSR
sample size (n1), and the grid row indicates the shape of the second sample. The colors of the lines and symbols indicate
the second sample size (approximate n2). For example, the bottom left graph shows the number of significant test results
(out of ten tests) on CSR realizations of 50 points with Right realizations of approximately 50, 100, 250, and 500 points.
Note that the spaces between horizontal tick marks are only approximately represented.
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Fig. 65: A grid of line graphs showing the results of a simulation comparing multiple rotations of the modified Syrjala
test using unweighted absolute differences in the ECDFs (UWA). The grid column name indicates the CSR sample size
(n1), and the grid row indicates the shape of the second sample. The colors of the lines and symbols indicate the second
sample size (approximate n2). For example, the bottom left graph shows the number of significant test results (out of ten
tests) on CSR realizations of 50 points with Right realizations of approximately 50, 100, 250, and 500 points. Note that
the spaces between horizontal tick marks are only approximately represented.
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Fig. 66: A grid of line graphs showing the results of a simulation comparing multiple rotations of the modified Syrjala
test using complementary weightings of the absolute differences in the ECDFs (CWA). The grid column name indicates
the CSR sample size (n1), and the grid row indicates the shape of the second sample. The colors of the lines and symbols
indicate the second sample size (approximate n2). For example, the bottom left graph shows the number of significant test
results (out of ten tests) on CSR realizations of 50 points with Right realizations of approximately 50, 100, 250, and 500
points. Note that the spaces between horizontal tick marks are only approximately represented.



231

n1 = 50 n1 = 100 n1 = 250 n1 = 500

C
S

R
C

enter
R

epel
C

orner
R

ight

0.1 0.2 0.3 0.5 0.75 0.9 0.1 0.2 0.3 0.5 0.75 0.9 0.1 0.2 0.3 0.5 0.75 0.9 0.1 0.2 0.3 0.5 0.75 0.9

0

5

10

0

5

10

0

5

10

0

5

10

0

5

10

Proportion of Toroidal Shifts (for DWS Toroidal Shift Modified Syrjala Test)

S
ig

ni
fic

an
t T

es
ts

n2 ≈ 50 100 250 500

Fig. 67: A grid of line graphs showing the results of a simulation comparing multiple randomly selected proportions of
points for the origins of the toroidal shifts of the modified Syrjala test using double weightings of the squared differences
in the ECDFs (DWS). The grid column name indicates the CSR sample size (n1), and the grid row indicates the shape of
the second sample. The colors of the lines and symbols indicate the second sample size (approximate n2). For example,
the bottom left graph shows the number of significant test results (out of ten tests) on CSR realizations of 50 points with
Right realizations of approximately 50, 100, 250, and 500 points.
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Fig. 68: A grid of line graphs showing the results of a simulation comparing multiple randomly selected proportions of
points for the origins of the toroidal shifts of the modified Syrjala test using unweighted squared differences in the ECDFs
(UWS). The grid column name indicates the CSR sample size (n1), and the grid row indicates the shape of the second
sample. The colors of the lines and symbols indicate the second sample size (approximate n2). For example, the bottom
left graph shows the number of significant test results (out of ten tests) on CSR realizations of 50 points with Right
realizations of approximately 50, 100, 250, and 500 points.
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Fig. 69: A grid of line graphs showing the results of a simulation comparing multiple randomly selected proportions of
points for the origins of the toroidal shifts of the modified Syrjala test using double weightings of the absolute differences
in the ECDFs (DWA). The grid column name indicates the CSR sample size (n1), and the grid row indicates the shape of
the second sample. The colors of the lines and symbols indicate the second sample size (approximate n2). For example,
the bottom left graph shows the number of significant test results (out of ten tests) on CSR realizations of 50 points with
Right realizations of approximately 50, 100, 250, and 500 points.
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Fig. 70: A grid of line graphs showing the results of a simulation comparing multiple randomly selected proportions of
points for the origins of the toroidal shifts of the modified Syrjala test using unweighted absolute differences in the ECDFs
(UWA). The grid column name indicates the CSR sample size (n1), and the grid row indicates the shape of the second
sample. The colors of the lines and symbols indicate the second sample size (approximate n2). For example, the bottom
left graph shows the number of significant test results (out of ten tests) on CSR realizations of 50 points with Right
realizations of approximately 50, 100, 250, and 500 points.
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Fig. 71: A grid of line graphs showing the results of a simulation comparing multiple randomly selected proportions of
points for the origins of the toroidal shifts of the modified Syrjala test using complementary weightings of the absolute
differences in the ECDFs (CWA). The grid column name indicates the CSR sample size (n1), and the grid row indicates
the shape of the second sample. The colors of the lines and symbols indicate the second sample size (approximate n2).
For example, the bottom left graph shows the number of significant test results (out of ten tests) on CSR realizations of
50 points with Right realizations of approximately 50, 100, 250, and 500 points.
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Fig. 72: A grid of line graphs showing the results of a simulation comparing multiple randomly selected proportions of
points for the origins of the toroidal shifts of the modified Syrjala test across a number of rotations using double weightings
of the squared differences in the ECDFs (DWS). The grid column name indicates the CSR sample size (n1), and the
grid row indicates the shape of the second sample. The colors of the lines and symbols indicate the second sample size
(approximate n2). For example, the bottom left graph shows the number of significant test results (out of ten tests) on
CSR realizations of 50 points with Right realizations of approximately 50, 100, 250, and 500 points.
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Fig. 73: A grid of line graphs showing the results of a simulation comparing multiple randomly selected proportions
of points for the origins of the toroidal shifts of the modified Syrjala test across a number of rotations using uniform
weightings of the squared differences in the ECDFs (UWS). The grid column name indicates the CSR sample size (n1),
and the grid row indicates the shape of the second sample. The colors of the lines and symbols indicate the second sample
size (approximate n2). For example, the bottom left graph shows the number of significant test results (out of ten tests)
on CSR realizations of 50 points with Right realizations of approximately 50, 100, 250, and 500 points.
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Fig. 74: A grid of line graphs showing the results of a simulation comparing multiple randomly selected proportions of
points for the origins of the toroidal shifts of the modified Syrjala test across a number of rotations using double weightings
of the squared differences in the ECDFs (DWS). The grid column name indicates the CSR sample size (n1), and the
grid row indicates the shape of the second sample. The colors of the lines and symbols indicate the second sample size
(approximate n2). For example, the bottom left graph shows the number of significant test results (out of ten tests) on
CSR realizations of 50 points with Right realizations of approximately 50, 100, 250, and 500 points.
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Fig. 75: A grid of line graphs showing the results of a simulation comparing multiple randomly selected proportions
of points for the origins of the toroidal shifts of the modified Syrjala test across a number of rotations using uniform
weightings of the squared differences in the ECDFs (UWS). The grid column name indicates the CSR sample size (n1),
and the grid row indicates the shape of the second sample. The colors of the lines and symbols indicate the second sample
size (approximate n2). For example, the bottom left graph shows the number of significant test results (out of ten tests)
on CSR realizations of 50 points with Right realizations of approximately 50, 100, 250, and 500 points.
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Fig. 76: A grid of line graphs showing the results of a simulation comparing multiple randomly selected proportions of
points for the origins of the toroidal shifts of the modified Syrjala test across a number of rotations using double weightings
of the squared differences in the ECDFs (DWS). The grid column name indicates the CSR sample size (n1), and the
grid row indicates the shape of the second sample. The colors of the lines and symbols indicate the second sample size
(approximate n2). For example, the bottom left graph shows the number of significant test results (out of ten tests) on
CSR realizations of 50 points with Right realizations of approximately 50, 100, 250, and 500 points.
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Fig. 77: A grid of line graphs showing the results of a simulation comparing multiple randomly selected proportions
of points for the origins of the toroidal shifts of the modified Syrjala test across a number of rotations using uniform
weightings of the squared differences in the ECDFs (UWS). The grid column name indicates the CSR sample size (n1),
and the grid row indicates the shape of the second sample. The colors of the lines and symbols indicate the second sample
size (approximate n2). For example, the bottom left graph shows the number of significant test results (out of ten tests)
on CSR realizations of 50 points with Right realizations of approximately 50, 100, 250, and 500 points.
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Fig. 78: A grid of line graphs showing the results of a simulation comparing toroidal shift thresholds of 25 points of the
modified Syrjala test across a number of rotations using double weightings of the squared differences in the ECDFs (DWS).
The grid column name indicates the CSR sample size (n1), and the grid row indicates the shape of the second sample.
The colors of the lines and symbols indicate the second sample size (approximate n2). For example, the bottom left graph
shows the number of significant test results (out of ten tests) on CSR realizations of 50 points with Right realizations of
approximately 50, 100, 250, and 500 points.
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Fig. 79: A grid of line graphs showing the results of a simulation comparing toroidal shift thresholds of 25 points of
the modified Syrjala test across a number of rotations using uniform weightings of the squared differences in the ECDFs
(UWS). The grid column name indicates the CSR sample size (n1), and the grid row indicates the shape of the second
sample. The colors of the lines and symbols indicate the second sample size (approximate n2). For example, the bottom
left graph shows the number of significant test results (out of ten tests) on CSR realizations of 50 points with Right
realizations of approximately 50, 100, 250, and 500 points.
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Fig. 80: A grid of line graphs showing the performance of the modified Syrjala test (using 0.1 proportion of points as
origins of toroidal shifts, 8 rotations, and the DWS statistic) on simulated eye-tracking data where subjects concentrate on
a single object at differing locations. The grid column name indicates the first sample size (n1), and the grid row indicates
the shape of the second sample. The shape of the first sample follows the same distribution exhibited in the first row. The
horizontal axis indicates the second sample size (n2). For example, the bottom left graph shows the number of significant
test results (out of ten tests) between the first samples with 15 points and second samples with 15, 25, 40, 70, 100, 250,
and 500 points. Note that the spaces between horizontal tick marks are only approximately represented.
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Fig. 81: A grid of line graphs showing the performance of the modified Syrjala test (using 0.1 proportion of points as
origins of toroidal shifts, 8 rotations, and the UWS statistic) on simulated eye-tracking data where subjects concentrate on
a single object at differing locations. The grid column name indicates the first sample size (n1), and the grid row indicates
the shape of the second sample. The shape of the first sample follows the same distribution exhibited in the first row. The
horizontal axis indicates the second sample size (n2). For example, the bottom left graph shows the number of significant
test results (out of ten tests) between the first samples with 15 points and second samples with 15, 25, 40, 70, 100, 250,
and 500 points. Note that the spaces between horizontal tick marks are only approximately represented.
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Fig. 82: A grid of line graphs showing the performance of the modified Syrjala test (using 0.1 proportion of points as
origins of toroidal shifts, 8 rotations, and the DWA statistic) on simulated eye-tracking data where subjects concentrate on
a single object at differing locations. The grid column name indicates the first sample size (n1), and the grid row indicates
the shape of the second sample. The shape of the first sample follows the same distribution exhibited in the first row. The
horizontal axis indicates the second sample size (n2). For example, the bottom left graph shows the number of significant
test results (out of ten tests) between the first samples with 15 points and second samples with 15, 25, 40, 70, 100, 250,
and 500 points. Note that the spaces between horizontal tick marks are only approximately represented.
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Fig. 83: A grid of line graphs showing the performance of the modified Syrjala test (using 0.1 proportion of points as
origins of toroidal shifts, 8 rotations, and the UWA statistic) on simulated eye-tracking data where subjects concentrate on
a single object at differing locations. The grid column name indicates the first sample size (n1), and the grid row indicates
the shape of the second sample. The shape of the first sample follows the same distribution exhibited in the first row. The
horizontal axis indicates the second sample size (n2). For example, the bottom left graph shows the number of significant
test results (out of ten tests) between the first samples with 15 points and second samples with 15, 25, 40, 70, 100, 250,
and 500 points. Note that the spaces between horizontal tick marks are only approximately represented.
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Fig. 84: A grid of line graphs showing the performance of the modified Syrjala test (using 0.1 proportion of points as
origins of toroidal shifts, 8 rotations, and the CWA statistic) on simulated eye-tracking data where subjects concentrate on
a single object at differing locations. The grid column name indicates the first sample size (n1), and the grid row indicates
the shape of the second sample. The shape of the first sample follows the same distribution exhibited in the first row. The
horizontal axis indicates the second sample size (n2). For example, the bottom left graph shows the number of significant
test results (out of ten tests) between the first samples with 15 points and second samples with 15, 25, 40, 70, 100, 250,
and 500 points. Note that the spaces between horizontal tick marks are only approximately represented.
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Fig. 85: A grid of line graphs showing the performance of the modified Syrjala test (using 0.1 proportion of points as
origins of toroidal shifts, 8 rotations, and the DWS statistic) on simulated eye-tracking data where subjects concentrate on
a single object at differing locations. The grid column name indicates the first sample size (n1), and the grid row indicates
the shape of the second sample. The shape of the first sample follows the same distribution exhibited in the first row. The
horizontal axis indicates the second sample size (n2). For example, the bottom left graph shows the number of significant
test results (out of ten tests) between the first samples with 15 points and second samples with 15, 25, 40, 70, 100, 250,
and 500 points. Note that the spaces between horizontal tick marks are only approximately represented.
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Fig. 86: A grid of line graphs showing the performance of the modified Syrjala test (using 0.1 proportion of points as
origins of toroidal shifts, 8 rotations, and the UWS statistic) on simulated eye-tracking data where subjects concentrate on
a single object at differing locations. The grid column name indicates the first sample size (n1), and the grid row indicates
the shape of the second sample. The shape of the first sample follows the same distribution exhibited in the first row. The
horizontal axis indicates the second sample size (n2). For example, the bottom left graph shows the number of significant
test results (out of ten tests) between the first samples with 15 points and second samples with 15, 25, 40, 70, 100, 250,
and 500 points. Note that the spaces between horizontal tick marks are only approximately represented.



251

15 25 40 70 100 250 500

cenbl
cenbl_0.275

cenbl_0.3
cenbl_0.325

cenbl_0.35

0.
1

0.
2

0.
3

0.
5

0.
75 0.

9

0.
1

0.
2

0.
3

0.
5

0.
75 0.

9

0.
1

0.
2

0.
3

0.
5

0.
75 0.

9

0.
1

0.
2

0.
3

0.
5

0.
75 0.

9

0.
1

0.
2

0.
3

0.
5

0.
75 0.

9

0.
1

0.
2

0.
3

0.
5

0.
75 0.

9

0.
1

0.
2

0.
3

0.
5

0.
75 0.

9

0

5

10

0

5

10

0

5

10

0

5

10

0

5

10

Proportion of Toroidal Shifts (DWA Modified Syrjala Test)

S
ig

ni
fic

an
t T

es
ts

n2 ≈ 15
25

40
70

100
250

500

Fig. 87: A grid of line graphs showing the performance of the modified Syrjala test (using 0.1 proportion of points as
origins of toroidal shifts, 8 rotations, and the DWA statistic) on simulated eye-tracking data where subjects concentrate on
a single object at differing locations. The grid column name indicates the first sample size (n1), and the grid row indicates
the shape of the second sample. The shape of the first sample follows the same distribution exhibited in the first row. The
horizontal axis indicates the second sample size (n2). For example, the bottom left graph shows the number of significant
test results (out of ten tests) between the first samples with 15 points and second samples with 15, 25, 40, 70, 100, 250,
and 500 points. Note that the spaces between horizontal tick marks are only approximately represented.
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Fig. 88: A grid of line graphs showing the performance of the modified Syrjala test (using 0.1 proportion of points as
origins of toroidal shifts, 8 rotations, and the UWA statistic) on simulated eye-tracking data where subjects concentrate on
a single object at differing locations. The grid column name indicates the first sample size (n1), and the grid row indicates
the shape of the second sample. The shape of the first sample follows the same distribution exhibited in the first row. The
horizontal axis indicates the second sample size (n2). For example, the bottom left graph shows the number of significant
test results (out of ten tests) between the first samples with 15 points and second samples with 15, 25, 40, 70, 100, 250,
and 500 points. Note that the spaces between horizontal tick marks are only approximately represented.
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Fig. 89: A grid of line graphs showing the performance of the modified Syrjala test (using 0.1 proportion of points as
origins of toroidal shifts, 8 rotations, and the CWA statistic) on simulated eye-tracking data where subjects concentrate on
a single object at differing locations. The grid column name indicates the first sample size (n1), and the grid row indicates
the shape of the second sample. The shape of the first sample follows the same distribution exhibited in the first row. The
horizontal axis indicates the second sample size (n2). For example, the bottom left graph shows the number of significant
test results (out of ten tests) between the first samples with 15 points and second samples with 15, 25, 40, 70, 100, 250,
and 500 points. Note that the spaces between horizontal tick marks are only approximately represented.
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APPENDIX C

Additional USU Posture Study Figures

This appendix provides further details of the setup and design of the USU Pos-

ture Study (Symanzik et al., 2017, 2018; Studenka et al., 2020; Coltrin et al., 2020;

McKinney and Symanzik, 2019, 2021) described in more detail in Chapter 4.

C.1 Posture Identification Numbers

Figures 90–113 depict the 23 postures (24 if the calibration image is counted

twice) shown to the subjects.
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Fig. 90: Posture ID 0 in the USU Posture Study. This image served as the initial
calibration image.
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Fig. 91: Posture ID 1 in the USU Posture Study.
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Fig. 92: Posture ID 2 in the USU Posture Study.
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Fig. 93: Posture ID 3 in the USU Posture Study.
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Fig. 94: Posture ID 4 in the USU Posture Study.
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Fig. 95: Posture ID 5 in the USU Posture Study.
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Fig. 96: Posture ID 6 in the USU Posture Study.
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Fig. 97: Posture ID 7 in the USU Posture Study.
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Fig. 98: Posture ID 8 in the USU Posture Study.
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Fig. 99: Posture ID 9 in the USU Posture Study.
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Fig. 100: Posture ID 10 in the USU Posture Study.
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Fig. 101: Posture ID 11 in the USU Posture Study.
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Fig. 102: Posture ID 12 in the USU Posture Study.
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Fig. 103: Posture ID 13 in the USU Posture Study.
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Fig. 104: Posture ID 14 in the USU Posture Study.
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Fig. 105: Posture ID 15 in the USU Posture Study.
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Fig. 106: Posture ID 16 in the USU Posture Study.
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Fig. 107: Posture ID 17 in the USU Posture Study.
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Fig. 108: Posture ID 18 in the USU Posture Study.
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Fig. 109: Posture ID 19 in the USU Posture Study.
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Fig. 110: Posture ID 20 in the USU Posture Study.
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Fig. 111: Posture ID 21 in the USU Posture Study.
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Fig. 112: Posture ID 22 in the USU Posture Study.
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Fig. 113: Posture ID 23 in the USU Posture Study. This image served as the final
calibration image and is identical to Figure 90.



279

REFERENCES

Anderson, N. H., Hall, P., Titterington, D. M., 1994. Two-Sample Test Statistics for

Measuring Discrepancies Between Two Multivariate Probability Density Functions

Using Kernel-Based Density Estimates. Journal of Multivariate Analysis 50 (1),

41–54.

Anderson, T. W., 1962. On the Distribution of the Two-Sample Cramér-von Mises

Criterion. The Annals of Mathematical Statistics 33 (3), 1148–1159.

Anderson, T. W., Darling, D. A., 1952. Asymptotic Theory of Certain “Goodness of

Fit” Criteria Based on Stochastic Processes. The Annals of Mathematical Statistics

23 (2), 193–212.

Anderson, T. W., Darling, D. A., 1954. A Test of Goodness of Fit. Journal of the

American Statistical Association 49 (268), 765–769.

Aronszajn, N., 1950. Theory of Reproducing Kernels. Transactions of the American

Mathematical Society 68 (3), 337–404.

Baddeley, A., Turner, R., 2005. spatstat: An R Package for Analyzing Spatial Point

Pattens. Journal of Statistical Software 12 (6), 1–42.

URL http://www.jstatsoft.org/v12/i06/

Baringhaus, L., Franz, C., 2004. On a New Multivariate Two-Sample Test. Journal

of Multivariate Analysis 88 (1), 190–206.
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